dynamic load
Recently Published Documents


TOTAL DOCUMENTS

3337
(FIVE YEARS 701)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 254 ◽  
pp. 113822
Author(s):  
Brandon Pinkney ◽  
Marc-André Dagenais ◽  
Gordon Wight

Author(s):  
Yutaro FUJII ◽  
Takuma HAYASHI ◽  
Shintaro FUKUDA ◽  
Yutaka YOKOYAMA

Author(s):  
zixuan zhou ◽  
Xiuchang Huang ◽  
Jiajin Tian ◽  
Hongxing Hua ◽  
Ming Tang ◽  
...  

Abstract Reducing the rotor dynamic load is an important issue to improve the performance and reliability of a helicopter. The control mechanism of the actively controlled flap on the rotor dynamic load is numerically and experimentally investigated by a 3-blade helicopter rotor in this paper. In the aero-elastic numerical approach, the complex motion of the rotor such as the stretching, bending, torsion and pitching of the blade including the deflection of the actively controlled flap (ACF) are all taken into consideration in the structural formulation. The aerodynamic solution adopted the vortex lattice method combining with the free wake model, in which the influence of ACF on the free wake and the aerodynamic load on the blade is taken into account as well. While the experimental method of measuring hub loads and acoustic was accomplished by a rotor rig in a wind tunnel. The result shows that the 3/rev ACF actuation can reduce the $3\omega$ hub load by more than 50\% at maximum, which is significantly better than the 4/rev control. While 4/rev has greater potential to reduce BVI loads than 3/rev with $\mu=0.15$. Further mechanistic analysis shows that by changing the phase difference between the dynamic load on the flap and the rest of the blade, the peak load on the whole blade can be improved, thus achieving effective control of the hub dynamic load, the flap reaches the minimum angle of attack at 90°-100° azimuth under best control condition; when the BVI load is perfectly controlled, the flap reaches the minimum angle of attack at 140° azimuth, and by changing the circulation of the wake, the intensity of blade vortex interaction in the advancing side is improved. Moreover, an interesting finding in the optimal control of noise and vibration is that an overlap point exist on the motion patterns of the flap with different frequencies.


2022 ◽  
Vol 934 ◽  
Author(s):  
Yin Lu Young ◽  
Jasmine C. Chang ◽  
Samuel M. Smith ◽  
James A. Venning ◽  
Bryce W. Pearce ◽  
...  

Experimental studies of the influence of fluid–structure interaction on cloud cavitation about a stiff stainless steel (SS) and a flexible composite (CF) hydrofoil have been presented in Parts I (Smith et al., J. Fluid Mech., vol. 896, 2020a, p. A1) and II (Smith et al., J. Fluid Mech., vol. 897, 2020b, p. A28). This work further analyses the data and complements the measurements with reduced-order model predictions to explain the complex response. A two degrees-of-freedom steady-state model is used to explain why the tip bending and twisting deformations are much higher for the CF hydrofoil, while the hydrodynamic load coefficients are very similar. A one degree-of-freedom dynamic model, which considers the spanwise bending deflection only, is used to capture the dynamic response of both hydrofoils. Peaks in the frequency response spectrum are observed at the re-entrant jet-driven and shock-wave-driven cavity shedding frequencies, system bending frequency and heterodyne frequencies caused by the mixing of the two cavity shedding frequencies. The predictions capture the increase of the mean system bending frequency and wider bandwidth of frequency modulation with decreasing cavitation number. The results show that, in general, the amplitude of the deformation fluctuation is higher, but the amplitude of the load fluctuation is lower for the CF hydrofoil compared with the SS hydrofoil. Significant dynamic load amplification is observed at subharmonic lock-in when the shock-wave-driven cavity shedding frequency matches with the nearest subharmonic of the system bending frequency of the CF hydrofoil. Both measurements and predictions show an absence of dynamic load amplification at primary lock-in because of the low intensity of cavity load fluctuations with high cavitation number.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Dang Viet Ha ◽  
Vu Van Tan ◽  
Vu Thanh Niem ◽  
Olivier Sename

The air suspension system has become more and more popular in heavy vehicles and buses to improve ride comfort and road holding. This paper focuses on the evaluation of the dynamic load reduction at all axles of a semi-trailer with an air suspension system, in comparison with the one using a leaf spring suspension system on variable speed and road types. First, a full vertical dynamic model is proposed for a tractor semi-trailer (full model) with two types of suspension systems (leaf spring and air spring) for three axles at the semi-trailer, while the tractor’s axles use leaf spring suspension systems. The air suspension systems are built based on the GENSYS model; meanwhile, the remaining structural parameters are considered equally. The full model has been validated by experimental results, and closely follows the dynamical characteristics of the real tractor semi-trailer, with the percent error of the highest value being 6.23% and Pearson correlation coefficient being higher than 0.8, corresponding to different speeds. The survey results showed that the semi-trailer with the air suspension system can reduce the dynamic load of the entire field of speed from 20 to 100 km/h, given random road types from A to F according to the ISO 8608:2016 standard. The dynamic load coefficient (DLC) with the semi-trailer using the air spring suspension system can be reduced on average from 14.8% to 29.3%, in comparison with the semi-trailer using the leaf spring suspension system.


2022 ◽  
Vol 202 ◽  
pp. 107581
Author(s):  
Hannes Hagmar ◽  
Le Anh Tuan ◽  
Robert Eriksson

2022 ◽  
Vol 118 ◽  
pp. 104959
Author(s):  
Meiling Yue ◽  
Zhongliang Li ◽  
Robin Roche ◽  
Samir Jemei ◽  
Noureddine Zerhouni

Sign in / Sign up

Export Citation Format

Share Document