scholarly journals Variation in fire scar phenology from mixed conifer trees in the Sierra Nevada

2018 ◽  
Vol 48 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Scott L. Stephens ◽  
Liam Maier ◽  
Lilah Gonen ◽  
Jennifer D. York ◽  
Brandon M. Collins ◽  
...  

Fire scar based studies have provided robust reconstructions of past fire regimes. The season in which a fire occurs can have considerable impacts to ecosystems but inference on seasonality from fire scars is relatively uncertain. This study examined patterns in the phenology of cambium formation and wounding responses in the five common mixed conifer tree species of the Sierra Nevada. The outer bark was shaved on 35 trees and individual locations within the shaved portions were wounded systematically by applying direct heat using a handheld torch. Most of the trees had not commenced annual ring development by the first burning treatment in late May. By the second treatment, scars were identified mostly within the early or middle earlywood, although variation was high compared with other treatment periods. By late October, all scars were recorded at the ring boundary. Although intra-ring scar positions generally followed a logical temporal pattern, there was high tree to tree variation such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) burned on 26 June induced scars in the early, mid, and late earlywood depending on the individual tree. This high variation makes it somewhat challenging to precisely assign past fire season to published fire history studies.

2006 ◽  
Vol 15 (4) ◽  
pp. 489 ◽  
Author(s):  
Xiaojun Kou ◽  
William L. Baker

Accurate fire-history data are needed if local management of fire or costly national plans for restoring and managing fire and forest structure are to succeed. Fire-history researchers often use fire scars and the composite fire interval method to reconstruct parameters of past fire regimes, such as the population mean fire interval, but the composite method has serious limitations. We modified an alternative non-composite fire interval method, the individual-tree fire-interval method, to derive a more accurate new method, the all-tree fire-interval method. A stochastic fire-scar generating model to assess the accuracy of the new method and its predecessors was then used. Three factors (scarring ratio, population mean fire interval, and tree age) that affect accuracy were varied in the model runs. More complexity (trees with varied scarring ratio between the first scar and successive scars) also was modelled to test the robustness of the method. The all-tree fire-interval method was shown to greatly improve accuracy and provide unbiased estimates of the population mean fire interval. The method also produced encouraging results when scarring was more complex. The new all-tree fire-interval method will require further research on the rates at which trees are scarred by fire, but this would be generally beneficial to understanding fire history.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2016 ◽  
Vol 25 (11) ◽  
pp. 1117 ◽  
Author(s):  
Marie-Pierre Rogeau ◽  
Mike D. Flannigan ◽  
Brad C. Hawkes ◽  
Marc-André Parisien ◽  
Rick Arthur

Like many fire-adapted ecosystems, decades of fire exclusion policy in the Rocky Mountains and Foothills natural regions of southern Alberta, Canada are raising concern over the loss of ecological integrity. Departure from historical conditions is evaluated using median fire return intervals (MdFRI) based on fire history data from the Subalpine (SUB), Montane (MT) and Upper Foothills (UF) natural subregions. Fire severity, seasonality and cause are also documented. Pre-1948 MdFRI ranged between 65 and 85 years in SUB, between 26 and 35 years in MT and was 39 years in UF. The fire exclusion era resulted in a critical departure of 197–223% in MT (MdFRI = 84–104 years). The departure in UF was 170% (MdFRI = 104 years), while regions of continuous fuels in SUB were departed by 129% (MdFRI = 149 years). The most rugged region of SUB is within its historical range of variation with a departure of 42% (MdFRI = 121 years). More mixed-severity burning took place in MT and UF. SUB and MT are in a lightning shadow pointing to a predominance of anthropogenic burning. A summer fire season prevails in SUB, but occurs from spring to fall elsewhere. These findings will assist in developing fire and forest management policies and adaptive strategies in the future.


2014 ◽  
Vol 23 (7) ◽  
pp. 959 ◽  
Author(s):  
Larissa L. Yocom ◽  
Peter Z. Fulé ◽  
Donald A. Falk ◽  
Celia García-Domínguez ◽  
Eladio Cornejo-Oviedo ◽  
...  

We investigated the influence of broad- v. fine-scale factors on fire in an unusual landscape suitable for distinguishing the drivers of fire synchrony. Our study was conducted in the Sierra Madre Oriental mountain range, in north-eastern Mexico. We worked in nine sites on three parallel mountains that receive nearly identical broad-scale climatic influence, but between which fires are unlikely to spread. We collected and cross dated samples from 357 fire-scarred trees in nine sites in high-elevation mixed-conifer forests and identified fire dates. We used Jaccard similarity analysis to evaluate synchrony among sites and quantified relationships between climate and fire occurrence. Fires were historically frequent (mean fire interval ranged from 8 to 16 years in all sites) and dates of fire exclusion ranged from 1887 to 1962. We found low fire synchrony among the three mountains, indicating a strong influence of fine-scale factors on fire occurrence. Fire regime attributes were similar across mountains despite the independence of fire dates. La Niña events were associated with fire over time, although not significantly since the 1830s. Our results highlight the importance of scale in describing fire regimes and suggest that we can use fire history to understand controls on complex ecosystem processes and patterns.


2008 ◽  
Vol 17 (1) ◽  
pp. 84 ◽  
Author(s):  
Jennifer Pierce ◽  
Grant Meyer

Alluvial fan deposits are widespread and preserve millennial-length records of fire. We used these records to examine changes in fire regimes over the last 2000 years in Yellowstone National Park mixed-conifer forests and drier central Idaho ponderosa pine forests. In Idaho, frequent, small, fire-related erosional events occurred within the Little Ice Age (~1450–1800 AD), when greater effective moisture probably promoted grass growth and low-severity fires. This regime is consistent with tree-ring records showing generally wetter conditions and frequent fires before European settlement. At higher elevations in Yellowstone, cool conditions limited overall fire activity. Conversely, both Idaho and Yellowstone experienced a peak in fire-related debris flows between ~950 and 1150 AD. During this generally warmer time, severe multidecadal droughts were interspersed with unusually wet intervals that probably increased forest densities, producing stand-replacing fires. Thus, severe fires are clearly within the natural range of variability in Idaho ponderosa pine forests over longer timescales. Historical records indicate that large burn areas in Idaho correspond with drought intervals within the past 100 years and that burn area has increased markedly since ~1985. Recent stand-replacing fires in ponderosa pine forests are likely related to both changes in management and increasing temperatures and drought severity during the 20th century.


2020 ◽  
Vol 29 (5) ◽  
pp. 326 ◽  
Author(s):  
Martyn Eliott ◽  
Tom Lewis ◽  
Tyron Venn ◽  
Sanjeev Kumar Srivastava

Land management agencies in Queensland conduct planned burning for a variety of reasons, principally for management of fuels for human asset protection and biodiversity management. Using Queensland Parks and Wildlife Service’s archived manually derived fire reports, this study considered the individual components of the fire regime (extent, frequency and season) to determine variation between planned and unplanned fire regimes in south-east Queensland. Overall, between 2004 and 2015, planned fire accounted for 31.6% and unplanned fire 68.4% of all fire on Queensland Parks and Wildlife Service state-managed land. Unplanned fire was more common in spring (September–October), and planned fire was more common in winter (June–August). Unplanned fire affected 71.4% of open forests and woodlands (148563ha), whereas 58.8% of melaleuca communities (8016ha) and 66.6% of plantations (2442ha) were burnt with planned fire. Mapping fire history at a regional scale can be readily done with existing publicly available datasets, which can be used to inform the assessment of planned burning effectiveness for human asset protection and the management of biodiversity. Fire management will benefit from the continued recording of accurate fire occurrence data, which allows for detailed fire regime mapping and subsequent adaptive management of fire regimes in the public domain.


1987 ◽  
Vol 17 (7) ◽  
pp. 582-587 ◽  
Author(s):  
Donald C. Pitcher

The relationship between historical fires and age structure was examined on three plots in red fir (Abiesmagnifica var. shastensis Lemm.) forests within Sequoia National Park, California, U.S.A. All trees greater than 0.1 m in height were mapped and aged. Fire history was determined from 16 fire-scar sections. Red fir trees are more shade tolerant, longer lived, larger, and slower growing than western white pine (Pinusmonticola Dougl.) on the plots. No fires have occurred since 1886, but prior to that time the average fire-free interval was 65 years. Most of the trees on two of the plots originated after fires, but on the third plot red fir regeneration was delayed for at least 60 years following the last fire. Structural differences between the plots were linked to variations in fire behavior. The decrease in fire frequencies in this century may have led to a decrease in red fir establishment. Excluding the most recent period, the forest age structure is in something of a steady state that approximates a negative exponential age-class distribution.


2018 ◽  
Vol 66 (2) ◽  
pp. 134 ◽  
Author(s):  
Erica Shedley ◽  
Neil Burrows ◽  
Colin J. Yates ◽  
David J. Coates

Inappropriate fire-regimes brought about by patterns of human settlement and land-use threaten plant diversity in Mediterranean-type climate (MTC) regions. In south-west Western Australia (SWWA), where there are many threatened plant species distributed across a range of human-modified landscapes, there is a need for approaches to identify where the threat is greatest. This requires knowledge of contemporary fire regimes, how they vary across landscapes, and the sensitivity of threatened species to these regimes. Currently, this information is lacking, and this limits strategic fire management. In this study we compiled fire response information for SWWA’s threatened plant species and undertook a bioregional assessment of variation in fire interval over the last 40 years. We determined the fire response traits of 242 (60%) of the region’s 401 extant threatened species. Over half of the 242 species were obligate seeders and will therefore have population dynamics particularly sensitive to fire interval. Our study highlights large differences in fire interval across nine bioregions in SWWA. The differences were greatest for the heavily cleared and fragmented bioregions compared with more continuously vegetated bioregions. We discuss how variations in the frequency of fire life-history traits and fire interval interact to determine the nature and relative level of threat posed by fire in these landscapes. Survival of many populations of threatened flora in this biodiversity hotspot will depend on developing appropriate fire regimes that match the regeneration requirements of each species.


Sign in / Sign up

Export Citation Format

Share Document