Response of cool-season grain legumes to waterlogging at flowering

Author(s):  
Silvia Pampana ◽  
Alessandro Masoni ◽  
Iduna Arduini
Keyword(s):  
1997 ◽  
Vol 37 (1) ◽  
pp. 103 ◽  
Author(s):  
K. H. M. Siddique ◽  
J. Sykes

Summary. Several cool- and warm-season pulse crops (grain legumes) are grown in rotation with cereals and pasture forming sustainable farming systems in Australia. Australian pulse production has increased rapidly over the past 25 years to about 2 x 106 t/year, mainly because of the increase in the area and yield of lupin production for stockfeed purposes. Pulses currently comprise only 10% of the cropping areas of Australia and this could be expanded to 16% as there are large areas of soil types suitable for a range of pulse crops and new better-adapted pulse varieties are becoming available. Cool-season pulses will continue to dominate pulse production in Australia and the majority of the expansion will probably come from chickpea and faba bean industries. There appears to be no major constraint to pulse production in Australia that cannot be addressed by breeders, agronomists and farmers. Of the current major pulse crops, field pea faces the most number of difficulties, in particular the lack of disease management options. A recent strategic plan of the Australian pulse industry predicts the production of 4 x 106 t/year by 2005 but this will largely depend upon export demand and pulse prices. It is predicted that the growth in pulse production will come from increased productivity in the existing areas, from 1.0 to 1.4 t/ha, through improvements in crop management and the development of superior varieties. The area of pulse production will also expand by an additional 1.2 x 106 ha probably yielding 1.0 t/ha. If trends in grazing stock prices continue, the increased area under pulse production will mostly come at the expense of those areas under unimproved pasture and continuous cereal cropping.


2020 ◽  
Author(s):  
Jitendra Kumar ◽  
Debjyoti Sen Gupta ◽  
Ivica Djalovic ◽  
Shiv Kumar ◽  
Kadambot H. M. Siddique

1999 ◽  
Vol 50 (3) ◽  
pp. 403 ◽  
Author(s):  
J. D. Berger ◽  
K. H. M. Siddique ◽  
S. P. Loss

Variation among a range of potentially deleterious non-protein amino acids found in the seeds of the genera Vicia and Lathyrus was determined by growing species at up to 31 sites covering the range of environments experienced in the cropping region of south-west Australia. γ-Glutamyl-S-ethenyl cysteine (GEC) concentrations in V. narbonensis were correlated to seed sulfur levels (r = 0.95, P < 0.001) in 1 of 2 genotypes, and shown to increase under conditions of increasing soil sulfur availability, pH, clay content, cation exchange capacity, concentration of exchangeable cations, and salinity. To capitalise on the agricultural potential of this species we recommend the selection of genotypes that break the linkage between GEC and seed sulfur. In Lathyrus species the degree of variation of β-N-oxalyl-L-α, β-diaminopropionic acid (ODAP) in the seed appears to be proportional to the species mean ODAP concentration; L. ochrus was more responsive than L. sativus, which was in turn more responsive than L. cicera. Seed ODAP concentrations in L. ochrus and L. sativus were positively correlated with soil phosphorus, and negatively correlated with clay content and salinity, and may constrain the species potential for human and animal consumption. In V. ervilia seed, canavanine concentrations were extremely variable in the field (0.01–0.17%), but are unlikely to reduce the stockfeed potential of this species for either monogastrics or ruminants.


2007 ◽  
Vol 58 (5) ◽  
pp. 406 ◽  
Author(s):  
Z. Solaiman ◽  
T. D. Colmer ◽  
S. P. Loss ◽  
B. D. Thomson ◽  
K. H. M. Siddique

Transient waterlogging reduces the yield of cool-season grain legumes in several parts of the world. The tolerance of grain legumes to waterlogging may vary between and within species. This study investigated the effects of 7 days of waterlogging and subsequent recovery (10 days) on plant growth to evaluate the variation in tolerance among 7 cool-season grain legume species, in sand culture in glasshouse experiments. Additionally waterlogging tolerance of 6 faba bean genotypes was also evaluated. Tolerance to waterlogging as indicated by root and shoot growth (as % of drained controls) was ranked as follows: faba bean > yellow lupin > grass pea > narrow-leafed lupin > chickpea > lentil > field pea. Faba bean produced adventitious roots and aerenchyma leading to increased root porosity (9% gas volume per unit root volume). Among the 6 faba bean genotypes screened, accession 794 showed the best waterlogging tolerance, but it was also the slowest growing accession, which might have contributed to apparent tolerance (i.e. growth as % drained control). It is concluded that waterlogging tolerance in grain legumes varied between and within species, with faba bean being the most tolerant. The variation in tolerance identified within the limited set of faba bean genotypes evaluated suggests scope for further genetic improvement of tolerance in this species.


Sign in / Sign up

Export Citation Format

Share Document