Liver Glycogen Reserves of Interacting Resident and Introduced Trout Populations

1961 ◽  
Vol 18 (1) ◽  
pp. 125-135 ◽  
Author(s):  
P. W. Hochachka

Three groups of trout, two introduced populations of Salmo gairdneri and a resident Salmo clarki, were studied in stream sections. Liver glycogen deposits, which were reduced to low levels during transportation to the stream, were restored in 2 to 3 weeks in all groups, with recovery rates being approximately inverse to the population density. Within the hatchery groups, larger fish laid down greater glycogen stores. Wild trout maintained their high glycogen reserves throughout the experiment.

1959 ◽  
Vol 16 (3) ◽  
pp. 321-328 ◽  
Author(s):  
R. B. Miller ◽  
A. C. Sinclair ◽  
P. W. Hochachka

In a stream occupied by a resident wild trout population, mortality of introduced hatchery trout is greater than when similar trout are released in a barren stream. From this it has been inferred that in the occupied stream the new-comers cannot find niches and succumb to exhaustion in the open current. A conspicuous rise in blood lactic acid in planted hatchery trout supports this inference.In the present experiment rainbow trout of identical brood stock were raised on two diets; one group received a complete dry pelleted ration, the other, ground liver. After 35 weeks the trout were subjected to varying degrees of exercise, following which blood lactate and liver and muscle glycogen were assayed. It was found that the pellet-fed trout had more glycogen stores before exercise; that during exercise this group maintained its liver glycogen but lost about half the muscle glycogen after 15 minutes of exercise. After 12 hours' rest muscle glycogen had risen to the normal level. In the liver-fed trout liver glycogen was depleted to one-half after 15 minutes' exercise and muscle glycogen fell to one-fifth or lower. Twelve hours rest failed to restore either liver or muscle glycogen. Prolonged exercise in a current of one mile per hour reduced glycogen to about 1/4 in the liver-fed fish; some died during the test, and none returned to normal metabolic states after 24 hours. It is concluded that exhaustion of metabolites such as glycogen plays some part in deaths of planted trout, and that the hatchery diet can materially affect the ability of the fish to survive.


1962 ◽  
Vol 19 (1) ◽  
pp. 127-136 ◽  
Author(s):  
P. W. Hochachka ◽  
A. C. Sinclair

Changes in the glycogen reserves of epaxial and heart muscle of trout were followed after stream planting. Muscle glycogen recovered quickly in large fish; more slowly in smaller ones, and was related to earlier reported changes in liver glycogen and blood lactic acid. Heart glycogen increased initially, but fell again shortly after feeding became stabilized. Muscle glycogen reserves of wild trout were lower in the presence of hatchery fish than in their absence. A depletion of some metabolite, such as glycogen, in conjunction with an increased body demand due to raised basal metabolism was suggested as a factor in delayed mortality.


1972 ◽  
Vol 29 (11) ◽  
pp. 1615-1624 ◽  
Author(s):  
James E. Bryan ◽  
P. A. Larkin

Analyses of stomach contents showed that the kinds of prey eaten by brook trout (Salvelinus fontinalis), cutthroat trout (Salmo clarki), and rainbow trout (Salmo gairdneri) were seldom distributed at random among the individuals. Repeated observation of food eaten by individuals in a stream and ponds showed that prey types were eaten in proportions which were characteristic for an individual.Specialization occurred on several different kinds of prey. Although the degree of specialization was higher during shorter intervals, the data suggested that some specialization persisted for half a year. There were no striking correlations between degree of specialization and other individual properties such as size, growth rate, weight of food, number of food items, previous specialization, or area of recapture.In addition to the observations on trout in relatively undisturbed habitats, a field experiment was conducted using laboratory-reared rainbow trout held in small ponds. The food of each trout in the experiment was sampled repeatedly. In analysis of variance, interaction among the individuals and kinds of prey eaten showed that food specialization occurred. Both the absolute and relative abundance of potential prey were constant during the experiment.


2008 ◽  
Vol 86 (10) ◽  
pp. 1095-1100 ◽  
Author(s):  
Steve C. Dinsmore ◽  
David L. Swanson

Freezing survival may differ among winters in chorus frogs ( Pseudacris triseriata (Wied-Neuwied, 1838)), and low freezing survival is associated with low hepatic glycogen stores. The pattern of prehibernation liver glycogen accumulation in chorus frogs is unknown. Frogs might accumulate hepatic glycogen stores until a threshold level sufficient for winter survival is attained, after which frogs enter hibernation (critical threshold hypothesis). According to this model, frogs active late in the season should only be those with low hepatic glycogen stores. Alternatively, hepatic glycogen levels might continue to increase throughout the fall as long as frogs remain active (continuous increase hypothesis). We tested these hypotheses by measuring liver and leg muscle glycogen, glucose, and glycogen phosphorylase activities in chorus frogs throughout the fall prehibernation period in southeastern South Dakota. Hepatic glycogen levels were significantly related to date and increased throughout the fall period, consistent with the continuous increase hypothesis. This suggests that hepatic glycogen levels do not serve as a cue for entrance into hibernation. Liver phosphorylase activity did not vary significantly with progression of the fall season and activity was lower than in winter, suggesting that the winter increment of phosphorylase activity requires some stimulus during hibernation (e.g., low temperatures).


Author(s):  
Natalia Almeida Rodrigues ◽  
Claudio Alexandre Gobatto ◽  
Lucas Dantas Maia Forte ◽  
Filipe Antônio de Barros Sousa ◽  
Adriana Souza Torsoni ◽  
...  

We investigated the effects of the acute and chronic exercise, prescribed in different intensity zones, but with total load-matched on mitochondrial markers (COX-IV, Tfam, and citrate synthase (CS) activity in skeletal muscles, heart, and liver), glycogen stores, aerobic capacity and anaerobic index in swimming rats. For this, two experimental designs were performed (acute and chronic efforts). Load-matched exercises were prescribed below and above and on the anaerobic threshold (AnT), determined by the Lactate Minimum test. In chronic programs, two training prescription strategies were assessed (monotonous and linear periodized model). Results show changes in glycogen stores but no modification in the COX-IV and Tfam contents after acute exercises. In the chronic protocols, COX-IV and Tfam proteins and CS adaptations were intensity and tissue dependents. Monotonous training promoted better adaptations than the periodized model. Training at 80% of the AnT improved both performance variables, emphasizing the anaerobic index, concomitant to CS and COX-IV improvement (soleus muscle). The aerobic capacity and CS activity (gastrocnemius) were increased after 120% AnT training. In conclusion, acute exercise protocol did not promote responses in mitochondrial target proteins. An intensity and tissue dependence are reported in the chronic protocols, highlighting training at 80 and 120% of the AnT. Novelty: • Load-matched acute exercise did not enhance COX-IV and Tfam contents in skeletal muscles, heart, and liver. • In chronic exercise, COX-IV, Tfam, and citrate synthase activity adaptations were intensity and tissue dependents. •Monotonous training was more efficient than the periodized linear model in adaptations of target proteins and enzymatic activity.


1982 ◽  
Vol 60 (9) ◽  
pp. 2079-2084 ◽  
Author(s):  
G. F. Wagner ◽  
B. A. McKeown

An experiment was conducted to determine if the hyperglycemia that is observed in zinc-stressed fish is also accompanied by changes in the levels of plasma insulin and liver glycogen. Juvenile rainbow trout were exposed to three concentrations of zinc sulphate along with a control group over 31 days. Plasma glucose levels were monitored in each group over the course of the experiment. The group demonstrating the most acute and sustained hyperglycemia (0.352 ppm zinc) was then analyzed along with the controls for changes in plasma insulin (using a teleost insulin radioimmunoassay) and liver glycogen levels. Significant depressions in plasma insulin and liver glycogen levels were observed in the zinc-exposed fish when compared with the controls. These changes are discussed with respect to possible influences of epinephrine, which is elevated in stressed fish, and (or) a direct effect of zinc metal on the pancreatic beta cells.


PEDIATRICS ◽  
1963 ◽  
Vol 32 (6) ◽  
pp. 1002-1006
Author(s):  
Donnell D. Etzwiler

Glucagon or a placebo preparation was administered to 65 juvenile diabetics on 74 separate occasions. When the initial blood glucose of these children showed them to be in reasonably good control, glucagon produced a hyperglycemic effect. However, when the blood glucose levels were markedly elevated, the effect of glucagon was less predictable. The depletion of liver glycogen stores and the possible effect of contaminating insulin in glucagon preparations are discussed.


1986 ◽  
Vol 251 (2) ◽  
pp. E178-E184 ◽  
Author(s):  
L. Witek-Janusek

Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rat. Female rats were placed on the Lieber-DeCarli liquid ethanol diet, an isocaloric liquid pair-fed diet, or an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24 h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat.


1987 ◽  
Vol 252 (3) ◽  
pp. R587-R593 ◽  
Author(s):  
B. Sonne ◽  
K. J. Mikines ◽  
H. Galbo

In fed rats, hyperglycemia develops during exercise. This contrasts with the view based on studies of fasted human and dog that euglycemia is maintained in exercise and glucose production (Ra) controlled by feedback mechanisms. Forty-eight-hour-fasted rats (F) were compared to fed rats (C) and overnight food-restricted (FR) rats. [3-3H]- and [U-14C] glucose were infused and blood and tissue sampled. During running (21 m/min, 0% grade) Ra increased most in C and least in F and only in F did Ra not significantly exceed glucose disappearance. Plasma glucose increased more in C (3.3 mmol/l) than in FR (1.6 mmol/l) and only modestly (0.6 mmol/l) and transiently in F. Resting liver glycogen and exercise glycogenolysis were highest in C and similar in FR and F. Resting muscle glycogen and exercise glycogenolysis were highest in C and lowest in F. During running, lactate production and gluconeogenesis were higher in FR than in F. At least in rats, responses of production and plasma concentration of glucose to exercise depend on size of liver and muscle glycogen stores; glucose production matches increase in clearance better in fasted than in fed states. Probably glucose production is stimulated by “feedforward” mechanisms and “feedback” mechanisms are added if plasma glucose decreases.


1975 ◽  
Vol 32 (6) ◽  
pp. 753-760 ◽  
Author(s):  
D. J. McLeay ◽  
D. A. Brown

In the static study (no exercise), liver glycogen stores were unchanged during 12-h exposure to 0.8 of the 96-h LC50; longer exposures caused a progressive decrease to levels one fifth those of controls at 72 h. Plasma glucose levels in fish held in 0.8 LC50 effluent for 3–96 h were elevated; at 96 h, glucose had increased threefold. Mean values for plasma lactate were elevated significantly at 3, 6, 24, 72, and 96 h.In the exercise (swimming one body length per second)–rest study, muscle glycogen levels decreased 53–78% during exercise in water or effluent (0.7 LC50) for 4–12 h, and did not recover during 12-h rest in water. Muscle glycogen for fish exercised for 12 h in effluent and then rested for 4 or 12 h in effluent was lower compared to values for fish exercised in effluent and then rested in water. There was no difference in liver glycogen levels offish exercised in effluent or water for 4–12 h. Values of liver glycogen for fish exercised in effluent for 12 h and then rested for 4, 8, or 12 h in effluent decreased 60–70% compared to fish exercised in water for 12 h and then rested in water and by 55–65% from fish exercised in effluent for 12 h and rested in water for 4–12 h. Plasma glucose levels were elevated one- to fourfold during exercise in water or effluent. Fish resting in water for 4, 8, or 12 h following exercise in water had relatively stable glucose levels; whereas for fish exercised and then rested in effluent the glucose levels increased twofold during resting. Plasma lactate levels were elevated five- to sixfold during exercise in water or effluent for 4–12 h, declining to values 1–2 times those of stock fish within 4-h rest. Plasma lactate levels for fish exercised in effluent and then rested in effluent or water were continually higher than those for fish exercised and rested in water.It was concluded that measurement of carbohydrate metabolites, particularly blood sugar levels, in unexercised fish could prove useful as a rapid method for measuring toxicity of pulpmill effluents and other pollutants.


Sign in / Sign up

Export Citation Format

Share Document