Movements of Hatchery-Reared Lake Trout in Lake Superior

1965 ◽  
Vol 22 (4) ◽  
pp. 999-1024 ◽  
Author(s):  
Richard L. Pycha ◽  
William R. Dryer ◽  
George R. King

The history of stocking of lake trout (Salvelinus namaycush) in the Great Lakes is reviewed.The study of movements is based on capture of 24,275 fin-clipped lake trout taken in experimental gill nets and trawls and commercial gill nets.Yearling lake trout planted from shore dispersed to 15-fath (27-m) depths in [Formula: see text]. Most fish remained within 2 miles (3.2 km) of the planting site 2 months, but within 4 months some fish had moved as much as 17 miles (27 km). The highest abundance of planted lake trout was in areas 2–4 miles (3.2–6.4 km) from the planting site even 3 years after release. Distance moved and size of fish were not correlated.Dispersal of lake trout begins at planting and probably continues until the fish are mature. Most movement was eastward in southern Lake Superior and followed the counterclockwise surface currents. Movement is most rapid in areas of strong currents and slowest in areas of weak currents or eddies. Movement to areas west of the Keweenaw Peninsula was insignificant from plantings in Keweenaw Bay and nil from other plantings farther east. Lake trout planted in the eastern third of the lake dispersed more randomly than those planted farther west. Few fish moved farther offshore than the 50-fath (91-m) contour. Lake trout planted in Canadian waters made insignificant contributions to populations in US waters.

1980 ◽  
Vol 37 (11) ◽  
pp. 2133-2145 ◽  
Author(s):  
Carl J. Walters ◽  
Greg Steer ◽  
George Spangler

Sustained yields, declines, and recovery of lake trout (Salvelinus namaycush) can be explained by a simple model that hypothesizes normal population regulation through density dependent body growth, coupled with depensatory lamprey mortality. The model indicates that either lamprey or fishing alone could have caused the Lake Superior decline, though they apparently operated in concert. The presence of depensatory lamprey mortality leads to a "cliff edge" in the system's dynamics, such that catastrophic changes may be repeated in the future. It is not unlikely that Lake Superior is on the verge of a second collapse. Options for dealing with potential disasters include conservative harvesting policies, development of more sensitive monitoring indicators, and modified stocking policies that may speed the coevolution of a viable lamprey/trout association.Key words: lake trout, sea lamprey, simulation, Great Lakes, policy analysis


1985 ◽  
Vol 42 (4) ◽  
pp. 737-743 ◽  
Author(s):  
William H. Horns

Genetic differences among surviving lake trout (Salvelinus namaycush) populations might be important for the reestablishment of self-sustaining populations in the Great Lakes, but little relevant information is available to guide stocking practices. I studied eggs and fry of four populations, two from Lake Superior, one from Trout Lake, and one (the Green Lake strain) derived in part from Lake Michigan. I found significant interpopulation differences in hatching and emergence times as well as in indices of morphological development rates. Interpopulation differences in morphological development at the times of emergence suggest that the Green Lake strain emerges at an earlier stage of morphological development than do the other populations. Between-lake differences are the most important sources of variability in my data; the Lake Superior populations were similar to one another, and variation among crosses within populations was small.


1980 ◽  
Vol 37 (11) ◽  
pp. 1989-2006 ◽  
Author(s):  
Everett Louis King Jr.

Criteria for the classification of marks inflicted by sea lamprey (Petromyzon marinus) into nine categories were developed from laboratory studies in an attempt to refine the classification system used in field assessment work. These criteria were based on characteristics of the attachment site that could be identified under field conditions by unaided visual means and by touching the attachment site. Healing of these marks was somewhat variable and was influenced by the size of lamprey, duration of attachment, severity of the wound at lamprey detachment, season and water temperature, and by other less obvious factors. Even under laboratory conditions staging of some wounds was difficult, especially at low water temperatures. If these criteria are to be used effectively and with precision in the field, close examination of individual fish may be required. If the feeding and density of specific year-classes of sea lampreys are to be accurately assessed on an annual basis, close attention to the wound size (as it reflects the size of the lamprey's oral disc) and character of wounds on fish will be required as well as consideration of the season of the year in which they are observed.Key words: sea lamprey, attack marks, lake trout, Great Lakes


1981 ◽  
Vol 38 (12) ◽  
pp. 1738-1746 ◽  
Author(s):  
Terrence R. Dehring ◽  
Anne F. Brown ◽  
Charles H. Daugherty ◽  
Stevan R. Phelps

Patterns of genetic variation among lake trout (Salvelinus namaycush) of eastern Lake Superior were examined using starch gel electrophoresis. We used 484 individuals sampled from three areas, representing three morphological types (leans, humpers, and siscowets). Of 50 loci examined, 44 were monomorphic in all groups sampled. Genetic variation occurs at six loci AAT-1,2, MDH-3,4, ME-1, and SOD-1. The average heterozygosity found (H = 0.015) is low relative to other salmonid species. A significant amount of heterogeneity exists among the 10 lake trout samples. These differences are due to variation within as well as between morphological types. The significance and management implications of these data are discussed.Key words: genetic variation, lake trout, Salvelinus namaycush, Lake Superior


2018 ◽  
Vol 44 (5) ◽  
pp. 1117-1122 ◽  
Author(s):  
Nicholas E. Jones ◽  
Michael Parna ◽  
Sarah Parna ◽  
Steve Chong

1975 ◽  
Vol 14 (4) ◽  
pp. 480-488 ◽  
Author(s):  
Ronald Parejko ◽  
Raymond Johnston ◽  
Robert Keller

Genetica ◽  
2006 ◽  
Vol 127 (1-3) ◽  
pp. 329-340 ◽  
Author(s):  
Bruno Guinand ◽  
Kim T. Scribner ◽  
Kevin S. Page ◽  
Kristi Filcek ◽  
Laura Main ◽  
...  

1980 ◽  
Vol 37 (11) ◽  
pp. 2057-2062 ◽  
Author(s):  
A. H. Lawrie ◽  
W. MacCallum

The Lake Superior lake trout (Salvelinus namaycush) population is being rebuilt following its collapse in the early 1950s. Estimates are presented of the contributions to this recovery provided directly by the artificial recruitment of hatchery fish, a demonstrable amelioration in mortality rates and a resurgence, lately, of natural recruitment. Of the increased lake trout abundance, 55% on the average was owing to trebling the planting density, 40% to improved survival, and 5% to increasing recruitment of native lake trout. The precise contribution of the sea lamprey (Petromyzon marinus) control program could not be defined for lack of sufficient early data.Key words: lake trout, sea lamprey, rehabilitation, natural recruitment, hatchery stocking


1981 ◽  
Vol 38 (12) ◽  
pp. 1539-1561 ◽  
Author(s):  
Reeve M. Bailey ◽  
Gerald R. Smith

The native fishes of the Great Lakes basin consist of 153 species, 64 genera, and 25 families. The total ichthyofaunal lists for the several lakes and (in parentheses) their tributary basins are as follows: Nipigon (and tributaries), 40; Superior, 53 (82); Michigan, 91 (135); Huron, 90 (112); St. Clair and Detroit River 108; Erie, 106 (125); Ontario, 95 (125). (These totals include 21 introduced species, most named species of ciscoes and chubs, and the blue pike (Stizostedion vitreum glaucum).)Several areas show notable within-species differentiation. Tributaries to Lake Ontario are part of a zone of secondary contact of a few small, nonmanaged, subspecies that entered the basin from both eastern and western glacial refugia. In the Great Lakes themselves, stocks of lake trout (Salvelinus namaycush), ciscoes, walleyes (Stizostedion vitreum vitreum), and a few nonmanaged species stem from differentiation within the basin or reflect interglacial events that occurred in Mississippi refugia.Species distribution patterns suggest colonization of the Great Lakes by 122 kinds solely from Mississippi basin refugia, 14 kinds only from Atlantic drainage refugia, and dual refugia for at least 18 kinds. Geological evidence provides some support for this interpretation. It is unlikely that any species colonized the Great Lakes from an Alaskan refuge in the past 14 000 yr.The ciscoes and chubs of the genus Coregonus include numerous genetically differentiated stocks, some of which may predate the opening of the Great Lakes in the past 14 000 yr. This conclusion is based on the occurrence in Lake Nipigon and Lake Superior of several forms that must have colonized prior to 9000 yr ago when the last access existed from Lake Superior to Lake Nipigon. At least four and perhaps up to eight forms of Great Lakes coregonines probably survived (or differentiated during) the last glaciation south of the ice in proglacial waters at the heads of major river systems. There is no evidence to support the hypothesized post-Wisconsinan dispersal of any of these forms from a northwestern refugium or their Pleistocene derivation by introgression with a Eurasian species.Despite the evidence for some long-standing genetic differentiation within Coregonus, morphological and biochemical characters fail to support the unequivocal recognition within the Great Lakes of more than one to four current biological species (apart from clupeaformis). The presently recognized species are groups of stocks whose position in the classification system is problematical. The named groups (two of which are extinct) included numerous stocks that were (or are) isolated by homing behavior specific to time and place. The lack of intrinsic reproductive isolation among forms increases their vulnerability to extinction because rare forms apparently hybridize with common forms spawning at adjacent times or places.Key words: biogeography, Coregonus, fish, Great Lakes, introduced fishes, Pleistocene, species, subspecies


2012 ◽  
Vol 69 (6) ◽  
pp. 1056-1064 ◽  
Author(s):  
Catherine A. Richter ◽  
Allison N. Evans ◽  
Maureen K. Wright-Osment ◽  
James L. Zajicek ◽  
Scott A. Heppell ◽  
...  

Thiamine (vitamin B1) deficiency is a global concern affecting wildlife, livestock, and humans. In Great Lakes salmonines, thiamine deficiency causes embryo mortality and is an impediment to restoration of native lake trout ( Salvelinus namaycush ) stocks. Thiamine deficiency in fish may result from a diet of prey with high levels of thiaminase I. The discoveries that the bacterial species Paenibacillus thiaminolyticus produces thiaminase I, is found in viscera of thiaminase-containing prey fish, and causes mortality when fed to lake trout in the laboratory provided circumstantial evidence implicating P. thiaminolyticus. This study quantified the contribution of P. thiaminolyticus to the total thiaminase I activity in multiple trophic levels of Great Lakes food webs. Unexpectedly, no relationship between thiaminase activity and either the amount of P. thiaminolyticus thiaminase I protein or the abundance of P. thiaminolyticus cells was found. These results demonstrate that P. thiaminolyticus is not the primary source of thiaminase activity affecting Great Lakes salmonines and calls into question the long-standing assumption that P. thiaminolyticus is the source of thiaminase in other wild and domestic animals.


Sign in / Sign up

Export Citation Format

Share Document