Fry-to-adult survival of natural and hatchery-produced chinook salmon (Oncorhynchus tshawytscha) from a common origin

1997 ◽  
Vol 54 (6) ◽  
pp. 1246-1254 ◽  
Author(s):  
M J Unwin

Fry-to-adult survival rates for chinook salmon (Oncorhynchus tshawytscha) from Glenariffe Stream, a tributary of the Rakaia River, New Zealand, were estimated for fish of both natural and hatchery origin. Survival of naturally produced fry, most of which leave Glenariffe Stream within 24 h of emergence, averaged 0.079% (range 0.013-1.17%). For hatchery fish released at 8-12 months, standardised to a mean weight of 38 g, survival covaried with weight at release consistently across all brood years and averaged 0.34% (range 0.008-3.28%). Survival rates for hatchery fish were four times higher than for naturally produced fry, but were extremely poor relative to their size at release. Survival rates for fish of natural and hatchery origin were positively correlated, suggesting that recruitment of both stocks is primarily controlled by common influences within the marine environment, probably during the first winter at sea. Stock-recruitment analysis for the natural population showed little tendency for recruitment to increase with stock size, suggesting that marine survival rates may be density dependent. Although the reasons for the relatively poor survival of hatchery fish are unclear, the results provide a case study in which hatchery fish appear to have a poorer ``fitness to survive'' than their natural counterparts.

2003 ◽  
Vol 60 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Martin J Unwin ◽  
Michael T Kinnison ◽  
Nelson C Boustead ◽  
Thomas P Quinn

The ability to survive to adulthood and return to natal sites is a fundamental characteristic of anadromous salmonids, and low survival is likely to have prevented establishment of new populations within and outside their native range. We hypothesised that there is family-level genetic variation in traits contributing to survival and that populations evolve to maximise survival in response to prevailing local conditions. To test these predictions, we compared postrelease survival for chinook salmon families from two populations established in New Zealand in the 1900s. Both populations, Glenariffe Stream and Hakataramea River, had similar survival when released after translocation to a drainage familiar to neither population. However, Glenariffe families had higher survival than Hakataramea families when both populations were released from Glenariffe Stream, indicating a survival advantage for the local fish. In addition, there were significant correlations between survival rates for paternal half-sib families of Glenariffe fish and between survival rates for families released from the two locations. Family-specific survival was positively correlated with weight at release, but there were underlying genetic correlations unexplained by size. Taken together, these results suggest considerable genetic influence over survival and return of salmon and that population-specific adaptation can occur within 30 generations of establishment.


NIR news ◽  
2018 ◽  
Vol 29 (5) ◽  
pp. 12-14
Author(s):  
Matthew R Miller ◽  
Jonathan Puddick ◽  
Jane E Symonds ◽  
Seumas P Walker ◽  
Hong (Sabrina) Tian

Near infrared spectroscopy has been employed to determine the proximate composition of Chinook salmon ( Oncorhynchus tshawytscha) and Greenshell Mussels™ ( Perna canaliculus). This work was presented at the Australian Near Infrared Spectroscopy Group and New Zealand Near Infrared Spectroscopy Society meeting in Rotorua, 11–12 April 2018, where it won the best overall presentation award for Near Infrared Science (Figure 1).


1998 ◽  
Vol 55 (3) ◽  
pp. 761-769 ◽  
Author(s):  
John R Skalski

Standard release-recapture models can provide release-specific estimates of survival probabilities for a group of salmonid smolt released at a particular time and place in the river. However, reliable estimates of season-wide survival for the population of outmigrating smolt are needed in the Snake-Columbia River Basin for careful management of the resource. Alternative estimators are presented to estimate season-wide survival of spring chinook salmon (Oncorhynchus tshawytscha) smolt. Using daily fish tagging, survival for the middle 95% of the migration was estimated to be SS = 0.873 (SE = 0.005) from the tailrace of Lower Granite Dam (RK 695) to the tailrace of Little Goose Dam (RK 635) in 1995. Daily survival estimates were remarkably stable across the migration season with some evidence of decreased survival towards the very end of the migration. Sample size calculations suggest good precision can be attained (i.e., projected SE = 0.01) with tag releases as small as n = 500 fish per day (d = 7) across the outmigration. Less than daily sampling can result in season-wide survival estimates that are too imprecise for many management purposes.


2010 ◽  
Vol 67 (11) ◽  
pp. 1840-1851 ◽  
Author(s):  
Kevin S. Williamson ◽  
Andrew R. Murdoch ◽  
Todd N. Pearsons ◽  
Eric J. Ward ◽  
Michael J. Ford

Understanding the relative fitness of naturally spawning hatchery fish compared with wild fish has become an important issue in the management and conservation of salmonids. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon ( Oncorhynchus tshawytscha ) in the natural environment. Size and age had a large influence on male fitness, with larger and older males producing more offspring than smaller or younger individuals. Size had a significant effect on female fitness, but the effect was smaller than on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both sexes. Hatchery-origin fish produced about half the juvenile progeny per parent when spawning naturally than did natural-origin fish. Hatchery fish tended to be younger and return to lower areas of the watershed than wild fish, which explained some of their lower fitness.


Genetics ◽  
2008 ◽  
Vol 179 (2) ◽  
pp. 1113-1118 ◽  
Author(s):  
Hannah Rajasingh ◽  
Arne B. Gjuvsland ◽  
Dag Inge Våge ◽  
Stig W. Omholt

2003 ◽  
Vol 30 (4) ◽  
pp. 377 ◽  
Author(s):  
Chris Jones ◽  
Susan Bettany ◽  
Henrik Moller ◽  
David Fletcher ◽  
Justine de Cruz

Breeding colonies of sooty shearwaters ('muttonbird', tïtï, Puffinus griseus) on mainland New Zealand have declined in recent years. New data on burrow occupancy and colony productivity for seven sooty shearwater breeding colonies on the coast of Otago, New Zealand for the 1996–97 and 1997–98 breeding seasons are presented and analysed as part of a five-year data set. Detection of a burrow's occupants using a fibre-optic burrowscope may underestimate absolute occupancy rates, but is still of value in the analysis of trends. Detection probabilities estimated by the novel use of mark–recapture models corresponded with those of previous studies of the technique's accuracy. Mainland declines are associated with a lack of control of introduced mammalian predators at most mainland colonies superimposed on a global pattern of decline in the species' abundance. Large numbers of recovered carcasses and an absence of burrow activity at two small mainland colonies show the decline to extinction of these colonies over the five years of collecting data. At one mainland colony with intensive predator control, survival rates and parameter variances are comparable with those found on a predator-free offshore island. All other mainland colonies showed negligible breeding success. There was a significant positive relationship between egg survival and an index of relative adult survival, with an apparent threshold below which few eggs hatch. Adult survival during the breeding season is likely to be the most important parameter in maintaining a colony's viability.


Sign in / Sign up

Export Citation Format

Share Document