RAPD analysis off genetic variation in the Australian fan flower, Scaevola

Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 600-606 ◽  
Author(s):  
Ines Swoboda ◽  
Prem L. Bhalla

The use of randomly amplified polymorphic DNA (RAPD) to study genetic variability in Scaevola (family Goodeniaceae), a native Australian species used in ornamental horticulture, is demonstrated. Plants of the genus Scaevola are commonly known as "fan flowers," due to the fan-like shape of the flowers. Nineteen accessions of Scaevola (12 cultivated and 7 wild) were studied using 20 random decamer arbitrary primers. Eight primers gave a distinct reproducible amplification profile of 90 scorable polymorphic fragments, enabling the differentiation of the Scaevola accessions. RAPD amplification of genomic DNA revealed a high genetic variability among the different species of Scaevola studied. Molecular markers were used to calculate the similarity coefficients, which were then used for determining genetic distances between each of the accessions. Based on genetic distances, a dendrogram was constructed. Though the dendrogram is in general agreement with the taxonomy, it also highlights discrepancies in the classification. The RAPD data showed that Scaevola aemula (series Pogogynae) is closer to Scaevola glandulifera of series Globuliferae than to the rest of members of series Pogogynae. In addition, the RAPD banding pattern of white flower S. aemula, one of the commercial cultivars, was identical to that of Scaevola albida, indicating their genetic similarity. Our study showed that there is a large genetic distance between commercial cultivars of Scaevola (Purple Fanfare, Pink Perfection, and Mauve Cluster), indicating considerable genetic variation among them. The use of RAPDs in intra- and inter-specific breeding of Scaevola is also explored.Key words: Scaevola, Australian native, RAPD, genetic distance, genetic variability.

Weed Science ◽  
1998 ◽  
Vol 46 (4) ◽  
pp. 408-413 ◽  
Author(s):  
Corey V. Ransom ◽  
David S. Douches ◽  
James J. Kells

Clonal individuals from 16 hemp dogbane populations with phenotypic variation were analyzed using isozyme and randomly amplified polymorphic DNA (RAPD) analysis. Plants originated from populations in Michigan and Illinois. Three knownApocynumspecies, spreading dogbane, hemp dogbane, and prairie dogbane, were evaluated. Genetic distance among populations was more pronounced with isozyme analysis compared to RAPD analysis. The combined isozyme and RAPD analysis data separated spreading dogbane from all other plants analyzed. Genetic variation was present among the 16 hemp dogbane populations, but was less than expected based on the phenotypic variation present among the collections. The short genetic distance between the 16 hemp dogbane collections and the threeApocynumspecies suggests that variation among populations of hemp dogbane may be from outcrossing with other closely relatedApocynumspecies. Isozyme and RAPD analyses were also conducted on plants from two populations in Michigan to determine the level of genetic variation among plants within the same population. Genetic analysis revealed that one population was entirely clonal, while the other population was a mixture of clonal and segregating plants.


2007 ◽  
Vol 67 (1) ◽  
pp. 153-160 ◽  
Author(s):  
A. Trott ◽  
SM. Callegari-Jacques ◽  
LFB. Oliveira ◽  
A. Langguth ◽  
MS. Mattevi

A RAPD analysis on six species of the rodent genus Oligoryzomys trapped in a wide area (ranging from 01° N to 32° S) of Brazilian territory was performed in order to determine the levels of genetic variability within and between its populations and species. One-hundred and ninety-three animals were collected in 13 different sites (corresponding to 17 samples) located at Pampas, Atlantic Rain Forest, Cerrado, and Amazon domains. Oligoryzomys sp., O. nigripes (8 populations), O. flavescens (4 populations), O. moojeni, O. stramineus, and O. fornesi were the taxa analyzed. Of the 20 primers tested, 4 generated a total of 75 polymorphic products simultaneously amplified in 151 specimens. Various diversity estimators analyzed showed considerable differences between species and populations, indicating a great genetic variation occurring in the Oligoryzomys taxa investigated. A cluster analysis was made using Nei's standard genetic distances, however, it did not correlate the genetic heterogeneity of the species and populations with the geographical areas.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 404B-404
Author(s):  
Patrick J. Conner ◽  
Bruce W. Wood

Genetic variation among pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars was studied using randomly amplified polymorphic DNA (RAPD) markers. Using a combination of primers, a unique fingerprint was produced for each of the pecan genotypes studied. The genetic relatedness between 44 cultivars was estimated using more than 100 RAPD markers. Genetic distances based on the simple matching coefficient varied from 0.91 to 0.59. The phenetic dendogram developed from cluster analysis showed relatively weak grouping association. However, cultivars with known pedigrees usually grouped with at least one of the parents and genetic similarity estimates appear to agree with known genetic relationships. Using RAPD information in determining genetic relationships among pecan cultivars with unknown or questionable pedigrees and the integration of that knowledge into the breeding program is discussed.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 402-406 ◽  
Author(s):  
B. J. Horvath ◽  
J. M. Vargas

Anthracnose basal rot (ABR) is a serious disease of turfgrasses that is caused by the pathogen Colletotrichum graminicola. The relationships of isolates causing ABR on turfgrasses to those causing disease on important crop hosts (maize, sorghum) remain unresolved. Genetic variation among isolates from annual bluegrass, creeping bentgrass, maize, and sorghum was evaluated based on host origin and geographic origin. Isozymes were used to estimate the genetic variation of the isolates. Five enzyme systems comprising 16 alleles from 5 loci were used. Allele frequencies, genetic distance, and linkage disequilibrium values were calculated for isolates based on both host and geographic origin. Isolates from creeping bentgrass and annual bluegrass were the most closely related based on Nei's genetic distance, while isolates from maize and sorghum were the most distantly related, consistent with their known species-level relationship. Isolates from annual bluegrass and creeping bentgrass had different genetic distances to isolates from both maize and sorghum. Annual bluegrass isolates from different geographic regions had the smallest genetic distance values observed in this study, indicating a very close relationship regardless of geographic origin. Based on these data, it appears that host origin, not geographic origin, plays a more important role in the genetic diversity of these fungi.


2005 ◽  
Vol 40 (10) ◽  
pp. 975-980 ◽  
Author(s):  
Maria Imaculada Zucchi ◽  
José Baldin Pinheiro ◽  
Lázaro José Chaves ◽  
Alexandre Siqueira Guedes Coelho ◽  
Mansuêmia Alves Couto ◽  
...  

This study was carried out to assess the genetic variability of ten "cagaita" tree (Eugenia dysenterica) populations in Southeastern Goiás. Fifty-four randomly amplified polymorphic DNA (RAPD) loci were used to characterize the population genetic variability, using the analysis of molecular variance (AMOVA). A phiST value of 0.2703 was obtained, showing that 27.03% and 72.97% of the genetic variability is present among and within populations, respectively. The Pearson correlation coefficient (r) among the genetic distances matrix (1 - Jaccard similarity index) and the geographic distances were estimated, and a strong positive correlation was detected. Results suggest that these populations are differentiating through a stochastic process, with restricted and geographic distribution dependent gene flow.


2000 ◽  
Vol 28 (02) ◽  
pp. 273-278 ◽  
Author(s):  
Kur-Ta Cheng ◽  
Borcherng Su ◽  
Chien-Tsu Chen ◽  
Chun-Ching Lin

The genetic variability of Astragalus medicine materials sold by twenty randomly selected stores in Taiwan was investigated using RAPD analysis in order to obtain available primers which could clearly differentiate among them. Total DNA isolated from the rhizomes of the samples were used as templates, and sixty 10 mer arbitrary primers were used in the analysis. The aim of the present study is to construct an identification model of molecular biotechniques applicable to Chinese herbal medicines in RAPD analysis. Three of the primers, OPT-03, OPT-13, and OPT-17, revealed polymorphic RAPD fingerprints among the samples of Astragalus membranaceus, and between Astragalus membranaceus and Hedysarum polybotrys samples. SSCP analysis was also conducted on PCR products from the ITS-1 region of ribosomal DNA in order to differentiate the two species.


1996 ◽  
Vol 121 (6) ◽  
pp. 996-1001 ◽  
Author(s):  
S.E. Gardiner ◽  
H.C.M. Bassett ◽  
C. Madie ◽  
D.A.M. Noiton

Information about a rare allele of phosphoglucomutase (PGM) that is shared by `Braeburn' and 16% of cultivars in the New Zealand Cultivar Collection was combined with historical information about cultivar distribution to select a set of 15 cultivars for a more detailed genetic analysis of their relatedness to the key New Zealand apple (Malus domestica Borkh.) `Braeburn'. DNA from all 16 cultivars was examined by RFLP analysis using 41 probe-enzyme combinations and also by RAPD analysis with 39 selected primers. The RFLP and RAPD data excluded a proposal that `Lady Hamilton' and `Braeburn' are genetically identical. All cultivars except `Lady Hamilton' were excluded as potential parents for `Braeburn' based on incompatible RFLP banding. Assessment of genetic distances between `Braeburn' and the other 15 cultivars from RFLP and RAPD data demonstrated that `Lady Hamilton' was more closely related to `Braeburn' than all others. We conclude that there is a high likelihood that `Lady Hamilton' is one of the parents of `Braeburn'.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 498d-498
Author(s):  
Mark W. Farnham

Collard (Brassica oleracea L. var. acephala) is an important vegetable the southeastern U. S. There are few (about 10) commercial cultivars, half being open-pollinating (OP) lines, the remainder more recent F1 hybrids. There is a potential untapped B. oleracea germplasm pool in the form of collard landraces perpetuated by southeastern gardeners and farmers. To determine the amount of genetic variation among cultivars and also whether landraces represent unique genotypes, ten cultivars and eight lines or landraces were evaluated using RAPD analysis. Decamer primers were used to amplify total genomic DNA and to differentiate collard lines and other B. oleracea crop cultivars. Additionally, individuals of an OP collard cultivar and a land-race were analyzed to evaluate intra-line variation. Virtually all primers detected polymorphic bands among lines although some identified considerably more variants. Intra-line analysis indicated that OP lines are genetically broad-based populations. Many unique RAPD markers were identified in landraces indicating that the lines represent unique genotypes and that further line collection is warranted.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 513E-513
Author(s):  
J. Lu ◽  
Z. Liu ◽  
Y. Zheng

Genetic relationships among 42 grape accession of at least 15 species were estimated and compared using RAPD and isozyme techniques. These accessions were either hybrids or wild collections of the Asiatic species, the American species, the European grape (V. vinifera), and muscadine grape (V. rotundifolia). A total of 196 RAPD fragments were generated from twenty 10-mer primers. The pairwise similarities among the accession ranged from 0.46 to 0.94. A dendrogram was generated based on the RAPD similarity coefficients. Species/accessions were basically grouped together in accordance with their geographic origins. The similarities and dendrogram resulted from the RAPD analysis were consistent with the ones generated from the isozyme data, and also consistent with the known taxonomic information. This result suggest that the RAPD method, like isozyme, is an useful tool for studying grape genetic relationship/diversity and origination.


Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 571-580
Author(s):  
Vladan Popovic ◽  
Aleksandar Lucic ◽  
Danijela Ristic ◽  
Ljubinko Rakonjac ◽  
Sabahudin Hadrovic ◽  
...  

The analysis of Bald cypress genetic variability at the level of test trees was performed using RAPD (Random Amlified Polymorphic DNA) markers. RAPD analysis was performed on 20 test trees with 13 primers. A total of ten primers gave a clear picture while three primers amplified weakly. 60 is a total number of detected bands obtained by RAPD analysis with 10 selected primers, and the average number of bands is 6. Based on presence/absence of RAPD fragments among all 20 Bald cypress test trees were calculated similarity coefficients by Dice and they range from 0.73 to 1. Based on similarity coefficients was performed the cluster analysis and results were presented as a dendrogram. All 20 test trees were grouped into two sub-clusters. Test trees 1, 4 and 11 were grouped in the first sub-cluster while other test trees were grouped in the second sub-cluster. By analysis of relations within every sub-cluster and sub-sub-cluster the existence of genetic distances between observed test trees can be noticed. The greatest similarity is between test trees 2, 12, 15 and 18. The results of genetic similarity and distance between observed test trees indicate the overwhelming presence of genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document