scholarly journals Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior

2012 ◽  
Vol 37 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Ryan G. Larsen ◽  
Damien M. Callahan ◽  
Stephen A. Foulis ◽  
Jane A. Kent-Braun

There is discrepancy in the literature regarding the degree to which old age affects muscle bioenergetics. These discrepancies are likely influenced by several factors, including variations in physical activity (PA) and differences in the muscle group investigated. To test the hypothesis that age may affect muscles differently, we quantified oxidative capacity of tibialis anterior (TA) and vastus lateralis (VL) muscles in healthy, relatively sedentary younger (8 YW, 8 YM; 21–35 years) and older (8 OW, 8 OM; 65–80 years) adults. To investigate the effect of physical activity on muscle oxidative capacity in older adults, we compared older sedentary women to older women with mild-to-moderate mobility impairment and lower physical activity (OIW, n = 7), and older sedentary men with older active male runners (OAM, n = 6). Oxidative capacity was measured in vivo as the rate constant, kPCr, of postcontraction phosphocreatine recovery, obtained by31P magnetic resonance spectroscopy following maximal isometric contractions. While kPCrwas higher in TA of older than activity-matched younger adults (28%; p = 0.03), older adults had lower kPCrin VL (23%; p = 0.04). In OIW compared with OW, kPCrwas lower in VL (∼45%; p = 0.01), but not different in TA. In contrast, OAM had higher kPCrthan OM (p = 0.03) in both TA (41%) and VL (54%). In older adults, moderate-to-vigorous PA was positively associated with kPCrin VL (r = 0.65, p < 0.001) and TA (r = 0.41, p = 0.03). Collectively, these results indicate that age-related changes in oxidative capacity vary markedly between locomotory muscles, and that altered PA behavior may play a role in these changes.

2009 ◽  
Vol 107 (3) ◽  
pp. 873-879 ◽  
Author(s):  
Ryan G. Larsen ◽  
Damien M. Callahan ◽  
Stephen A. Foulis ◽  
Jane A. Kent-Braun

It is well established that exercise training results in increased muscle oxidative capacity. Less is known about how oxidative capacities in distinct muscles, in the same individual, are affected by different levels of physical activity. We hypothesized that 1) trained individuals would have higher oxidative capacity than untrained individuals in both tibialis anterior (TA) and vastus lateralis (VL) and 2) oxidative capacity would be higher in TA than VL in untrained, but not in trained, individuals. Phosphorus magnetic resonance spectroscopy was used to measure the rate of phosphocreatine recovery ( kPCr), which reflects the rate of oxidative phosphorylation, following a maximal voluntary isometric contraction of the TA and VL in healthy untrained (7 women, 7 men, 25.7 ± 3.6 yr; mean ± SD) and trained (5 women, 7 men, 27.5 ± 3.4 yr) adults. Daily physical activity levels were measured using accelerometry. The trained group spent threefold more time (∼90 vs. ∼30 min/day; P < 0.001) in moderate to vigorous physical activity (MVPA). Overall, kPCr was higher in VL than in TA ( P = 0.01) and higher in trained than in untrained participants ( P < 0.001). The relationship between kPCr and MVPA was more robust in VL ( r = 0.64, P = 0.001, n = 25) than in TA ( r = 0.38, P = 0.06, n = 25). These results indicate greater oxidative capacity in vivo in trained compared with untrained individuals in two distinct muscles of the lower limb and provide novel evidence of higher oxidative capacity in VL compared with TA in young humans, irrespective of training status. The basis for this difference is not known at this time but likely reflects a difference in usage patterns between the muscles.


2016 ◽  
Vol 121 (4) ◽  
pp. 996-1003 ◽  
Author(s):  
Jane A. Kent ◽  
Liam F. Fitzgerald

Because of the fundamental dependence of mammalian life on adequate mitochondrial function, the question of how and why mitochondria change in old age is the target of intense study. Given the importance of skeletal muscle for the support of mobility and health, this question extends to the need to understand mitochondrial changes in the muscle of older adults, as well. We and others have focused on clarifying the age-related changes in human skeletal muscle mitochondrial function in vivo. These changes include both the maximal capacity for oxidative production of energy (ATP), as well as the relative use of mitochondrial ATP production for powering muscular activity. It has been known for nearly 50 yr that muscle mitochondrial content is highly plastic; exercise training can induce an ∼2-fold increase in mitochondrial content, while disuse has the opposite effect. Here, we suggest that a portion of the age-related changes in mitochondrial function that have been reported are likely the result of behavioral effects, as physical activity influences have not always been accounted for. Further, there is emerging evidence that various muscles may be affected differently by age-related changes in physical activity and movement patterns. In this review, we will focus on age-related changes in oxidative capacity and flux measured in vivo in human skeletal muscle.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S84-S85
Author(s):  
Fatemeh Adelnia ◽  
Jacek Urbanek ◽  
Yusuke Osawa ◽  
Michelle Shardell ◽  
Eleanor M Simonsick ◽  
...  

Abstract Age-related decline in muscle oxidative capacity negatively affects muscle function and mobility, which may lead to disability and frailty. Whether exercise and other life-style practices reduce age-related decline in muscle oxidative capacity is unclear. We assessed whether, after accounting for age, higher daily physical activity levels are associated with greater muscle oxidative capacity. Participants included 384 adults (54.7% women) aged 22 to 92 years from the Baltimore Longitudinal Study of Aging. Muscle oxidative capacity was measured in vivo using phosphorous magnetic resonance spectroscopy. We determined the time constant for phosphocreatine recovery (τPCr, in seconds) after exercise, with lower values of τPCr reflecting greater oxidative capacity. Time spent in moderate-to-vigorous physical activity (MVPA) was assessed using accelerometers that participants wore for 5.9 ± 0.9 consecutive days in the free-living environment. In linear regression models, older age was associated with higher τPCr (β = 0.39, p-value &lt;.001) after adjusting for sex, race, height and weight. After including MVPA as an independent variable, the standardized regression coefficient for age was attenuated by 40% to 0.22. p-value &lt;.001). MVPA was strongly associated with lower τPCr (β = -0.33, p-value &lt;.001) after adjusting for health status, education and smoking history and was only attenuated by 3% after additional adjustment for age. These results suggest that MVPA is strongly associated with muscle oxidative capacity independent of age, providing mechanistic insights into the health benefits of daily physical activity in older persons.


2016 ◽  
Vol 41 (11) ◽  
pp. 1137-1145 ◽  
Author(s):  
Liam F. Fitzgerald ◽  
Anita D. Christie ◽  
Jane A. Kent

Despite intensive efforts to understand the extent to which skeletal muscle mitochondrial capacity changes in older humans, the answer to this important question remains unclear. To determine what the preponderance of evidence from in vivo studies suggests, we conducted a systematic review and meta-analysis of the effects of age on muscle oxidative capacity as measured noninvasively by magnetic resonance spectroscopy. A secondary aim was to examine potential moderators contributing to differences in results across studies, including muscle group, physical activity status, and sex. Candidate papers were identified from PubMed searches (n = 3561 papers) and the reference lists of relevant papers. Standardized effects (Hedges’ g) were calculated for age and each moderator using data from the 22 studies that met the inclusion criteria (n = 28 effects). Effects were coded as positive when older (age, ≥55 years) adults had higher muscle oxidative capacity than younger (age, 20–45 years) adults. The overall effect of age on oxidative capacity was positive (g = 0.171, p < 0.001), indicating modestly greater oxidative capacity in old. Notably, there was significant heterogeneity in this result (Q = 245.8, p < 0.001; I2 = ∼70%–90%). Muscle group, physical activity, and sex were all significant moderators of oxidative capacity (p ≤ 0.029). This analysis indicates that the current body of literature does not support a de facto decrease of in vivo muscle oxidative capacity in old age. The heterogeneity of study results and identification of significant moderators provide clarity regarding apparent discrepancies in the literature, and indicate the importance of accounting for these variables when examining purported age-related differences in muscle oxidative capacity.


2018 ◽  
Vol 125 (5) ◽  
pp. 1468-1474 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Yosuke Yamada ◽  
Tome Ikezoe ◽  
Yuya Watanabe ◽  
Masashi Taniguchi ◽  
...  

Ultrasonic echo intensity (EI), an easy-to-use measure of intramuscular fat and fibrous tissues, is known to increase with aging. However, age-related changes in EI have not been examined in a longitudinal design. The objective of this study was to investigate 4-yr longitudinal changes in the EI of the quadriceps femoris in older adults, based on difference in physical activity (PA). This study included 131 community-dwelling older adults with a mean age of 72.9 ± 5.2 yr. Subcutaneous fat thickness (FT), muscle thickness (MT), and EI of the quadriceps femoris were measured by ultrasound. Isometric knee extensor strength was also measured. PA was assessed using a questionnaire at baseline, and participants were classified into the high or low PA groups. In 4 yr, a significant decrease in FT, MT, and strength was observed in both groups ( P < 0.05), whereas a significant decrease in EI was observed only in the high PA group ( P < 0.05). Multiple linear regression analyses revealed that the difference in PA was a significant predictor of 4-yr changes in MT (β = 0.189, P = 0.031) and EI (β = −3.145, P = 0.045) but not in the body mass index, FT, or strength adjusted for potential confounders. The present findings suggest that greater PA has a positive effect on longitudinal changes in the MT and EI of the quadriceps femoris in older adults. In addition, greater PA may contribute to a future decrease in EI, and an increase in EI may not occur in 4 yr, even in older adults with lesser PA. NEW & NOTEWORTHY Our results suggest that greater physical activity (PA) may mitigate future changes in muscle thickness and echo intensity (EI). A decrease in EI over 4 yr was observed in older adults with greater PA, and an increase in EI was not observed, even in older adults with smaller PA. Several cross-sectional studies demonstrated an increase in EI with aging. Additionally, the results of our longitudinal study suggest that an age-related increase in EI may be moderated after the old-age period.


2020 ◽  
Author(s):  
K. E. Hupfeld ◽  
H. W. Hyatt ◽  
P. Alvarez Jerez ◽  
M. Mikkelsen ◽  
C. J. Hass ◽  
...  

AbstractBrain markers of oxidative damage increase with advancing age. In response, brain antioxidant levels may also increase with age, although this has not been well investigated. Here we used edited magnetic resonance spectroscopy to quantify endogenous levels of glutathione (GSH, one of the most abundant brain antioxidants) in 37 young (mean: 21.8 (2.5) years; 19 F) and 23 older adults (mean: 72.8 (8.9) years; 19 F). Accounting for age-related atrophy, we identified higher frontal and sensorimotor GSH levels for the older compared to the younger adults. For the older adults only, higher sensorimotor (but not frontal) GSH was correlated with poorer balance, gait, and manual dexterity. This suggests a regionally-specific relationship between higher brain oxidative stress levels and motor performance declines with age. We suggest these findings reflect a compensatory upregulation of GSH in response to increasing brain oxidative stress with normal aging. Together, these results provide insight into age differences in brain antioxidant levels and implications for motor function.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Hadeel Halaweh ◽  
Ulla Svantesson ◽  
Carin Willén

Physically active older adults have reduced risk of functional restrictions and role limitations. Several aspects may interrelate and influence habitual physical activity (PA). However, older adults’ own perspectives towards their PA need to be addressed. The aim of this study was to explore the experiences of habitual physical activity in maintaining roles and functioning among older adult Palestinians ≥60 years. Data were collected through in-depth interviews based on a narrative approach. Seventeen participants were recruited (aged 64–84 years). Data were analyzed using a narrative interpretative method.Findings. Three central narratives were identified,“keep moving, stay healthy,”“social connectedness, a motive to stay active,”and “adapting strategies to age-related changes.” Conclusion. Habitual physical activity was perceived as an important factor to maintain functioning and to preserve active roles in older adults. Walking was the most prominent pattern of physical activity and it was viewed as a vital tool to maintain functioning among the older adults. Social connectedness was considered as a contributing factor to the status of staying active. To adapt the process of age-related changes in a context to stay active, the participants have used different adapting strategies, including protective strategy, awareness of own capabilities, and modifying or adopting new roles.


2000 ◽  
Vol 89 (3) ◽  
pp. 1072-1078 ◽  
Author(s):  
Jane A. Kent-Braun ◽  
Alexander V. Ng

It has been suggested that a decline in skeletal muscle oxidative capacity is a general consequence of aging in humans. However, previous studies have not always controlled for the effects of varying levels of physical activity on muscle oxidative capacity. To test the hypothesis that, when matched for comparable habitual physical activity levels, there would be no age-related decline in the oxidative capacity of a locomotor muscle, the postexercise recovery time of phosphocreatine was compared in the tibialis anterior muscle of young [ n = 19; 33.8 ± 4.8 (SD) yr] and older [ n = 18; 75.5 ± 4.5 yr] healthy women and men of similar, relatively low, activity levels. The intramuscular metabolic measurements were accomplished by using phosphorus magnetic resonance spectroscopy. The results indicate that there was no age effect on the postexercise recovery time of phosphocreatine recovery, thus supporting the stated hypothesis. These data suggest that there is no requisite decline in skeletal muscle oxidative capacity with aging in humans, at least through the seventh decade.


US Neurology ◽  
2016 ◽  
Vol 12 (01) ◽  
pp. 29 ◽  
Author(s):  
Robert W Motl ◽  
◽  
Emerson Sebastião ◽  
Rachel E Klaren ◽  
Edward McAuley ◽  
...  

There is a “greying” of the population of persons with multiple sclerosis (MS) that coincides with both increased life expectancy and the shifting demographic landscape worldwide. This growing cohort of older adults with MS undergoes normal age-related declines in physical and psychologic functioning that may be compounded by the disease and its progression. Little is known about predicting and managing the progression and consequences of MS in older adults. We believe that a focus on physical activity behavior represents a novel opportunity for transformative research on healthy aging with MS. The current paper reviews existing evidence on physical activity rates, correlates, consequences, and interventions among older adults with MS, and highlights important areas for future research on physical activity and health aging with MS.


Sign in / Sign up

Export Citation Format

Share Document