MUSCLE PROTEINS OF PACIFIC SALMON (ONCORHYNCHUS): II. AN INVESTIGATION OF MUSCLE PROTEIN AND OTHER SUBSTANCES SOLUBLE IN SALT SOLUTIONS OF LOW IONIC STRENGTH BY COLUMN CHROMATOGRAPHY

1962 ◽  
Vol 40 (7) ◽  
pp. 919-927 ◽  
Author(s):  
H. Tsuyuki ◽  
E. Roberts ◽  
R. E. A. Gadd

The muscle myogens and other components of the spring salmon (O. tshawytscha), chum salmon (O. keta), coho salmon (O. kisutch), and sockeye salmon (O. nerka), as well as the lingcod (Ophiodon elongatus), were separated by the use of diethylaminoethyl (DEAE) cellulose columns. Significant amounts of slowly dialyzable inosine and inosinic acid which may lead to spurious peaks in moving-boundary electrophoretic separations have been shown to be present in the muscle myogen preparations. The basic differences in the muscle myogen components of the Pacific salmon and the lingcod are compared.

1962 ◽  
Vol 40 (1) ◽  
pp. 919-927 ◽  
Author(s):  
H. Tsuyuki ◽  
E. Roberts ◽  
R. E. A. Gadd

The muscle myogens and other components of the spring salmon (O. tshawytscha), chum salmon (O. keta), coho salmon (O. kisutch), and sockeye salmon (O. nerka), as well as the lingcod (Ophiodon elongatus), were separated by the use of diethylaminoethyl (DEAE) cellulose columns. Significant amounts of slowly dialyzable inosine and inosinic acid which may lead to spurious peaks in moving-boundary electrophoretic separations have been shown to be present in the muscle myogen preparations. The basic differences in the muscle myogen components of the Pacific salmon and the lingcod are compared.


2011 ◽  
Vol 68 (6) ◽  
pp. 1122-1130 ◽  
Author(s):  
James R. Irvine ◽  
Masa-aki Fukuwaka

Abstract Irvine, J. R., and Fukuwaka, M. 2011. Pacific salmon abundance trends and climate change. – ICES Journal of Marine Science, 68: 1122–1130. Understanding reasons for historical patterns in salmon abundance could help anticipate future climate-related changes. Recent salmon abundance in the northern North Pacific Ocean, as indexed by commercial catches, has been among the highest on record, with no indication of decline; the 2009 catch was the highest to date. Although the North Pacific Ocean continues to produce large quantities of Pacific salmon, temporal abundance patterns vary among species and areas. Currently, pink and chum salmon are very abundant overall and Chinook and coho salmon are less abundant than they were previously, whereas sockeye salmon abundance varies among areas. Analyses confirm climate-related shifts in abundance, associated with reported ecosystem regime shifts in approximately 1947, 1977, and 1989. We found little evidence to support a major shift after 1989. From 1990, generally favourable climate-related marine conditions in the western North Pacific Ocean, as well as expanding hatchery operations and improving hatchery technologies, are increasing abundances of chum and pink salmon. In the eastern North Pacific Ocean, climate-related changes are apparently playing a role in increasing chum and pink salmon abundances and declining numbers of coho and Chinook salmon.


2000 ◽  
Vol 57 (6) ◽  
pp. 1252-1257 ◽  
Author(s):  
Yolanda Morbey

Protandry, the earlier arrival of males to the spawning grounds than females, has been reported in several studies of Pacific salmon (Oncorhynchus spp.). However, the reasons for protandry in salmon are poorly understood and little is known about how protandry varies among and within populations. In this study, protandry was quantified in a total of 105 years using gender-specific timing data from seven populations (one for pink salmon (O. gorbuscha), three for coho salmon (O. kisutch), two for sockeye salmon (O. nerka), and one for chinook salmon (O. tshawytscha)). Using a novel statistical procedure, protandry was found to be significant in 90% of the years and in all populations. Protandry may be part of the males' strategy to maximize mating opportunities and may facilitate mate choice by females.


1963 ◽  
Vol 41 (4) ◽  
pp. 875-887 ◽  
Author(s):  
D. R. Idler ◽  
B. Truscott ◽  
H. C. Freeman ◽  
V. Chang ◽  
P. J. Schmidt ◽  
...  

Intra-arterially injected cortisone-4-C14 and cortisol-4-C14 were cleared from the plasma of sexually mature and spawned sockeye salmon (O. nerka) at a much slower rate than from the plasma of immature sockeye and spawned Atlantic salmon (S. salar). The results explain the elevated hormone levels found in the blood of mature and spawned sockeye salmon. The normal clearance rate found with Atlantic salmon, which frequently survive spawning, would indicate that the impaired hormone metabolism was associated with the imminent death of the Pacific salmon rather than with the act of spawning.Testosterone and 17α-hydroxyprogesterone were found to be precursors of 11-ketotestosterone, a sex hormone found in high concentrations in the blood of mature sockeye salmon. Testosterone was also formed in vivo from 17α-hydroxyprogesterone. The results suggest more than one pathway for the synthesis of 11-ketotestosterone in salmon. Cortisol was converted to cortisone but no conversion of the former to 11-ketotestosterone could be demonstrated.


1962 ◽  
Vol 40 (7) ◽  
pp. 929-936 ◽  
Author(s):  
H. Tsuyuki ◽  
E. Roberts ◽  
R. E. A. Gadd

By the use of starch gel electrophoretic technique the muscle myogens of the five Pacific west coast species of the Oncorhynchus genus, the steelhead trout (representative of the genus Salmo), the lingcod, and Atlantic cod have been separated. The characteristic protein patterns were used to group the members of the Oncorhynchus genus into sockeye, pink, and chum salmon on the one hand and the spring and coho salmon on the other. Correlation of the groupings based upon their protein pattern is discussed in relation to a similar grouping arrived at through behavior studies by other workers. The relationship between column and gel electrophoretic separations has been investigated.


1963 ◽  
Vol 41 (1) ◽  
pp. 875-887
Author(s):  
D. R. Idler ◽  
B. Truscott ◽  
H. C. Freeman ◽  
V. Chang ◽  
P. J. Schmidt ◽  
...  

Intra-arterially injected cortisone-4-C14 and cortisol-4-C14 were cleared from the plasma of sexually mature and spawned sockeye salmon (O. nerka) at a much slower rate than from the plasma of immature sockeye and spawned Atlantic salmon (S. salar). The results explain the elevated hormone levels found in the blood of mature and spawned sockeye salmon. The normal clearance rate found with Atlantic salmon, which frequently survive spawning, would indicate that the impaired hormone metabolism was associated with the imminent death of the Pacific salmon rather than with the act of spawning.Testosterone and 17α-hydroxyprogesterone were found to be precursors of 11-ketotestosterone, a sex hormone found in high concentrations in the blood of mature sockeye salmon. Testosterone was also formed in vivo from 17α-hydroxyprogesterone. The results suggest more than one pathway for the synthesis of 11-ketotestosterone in salmon. Cortisol was converted to cortisone but no conversion of the former to 11-ketotestosterone could be demonstrated.


1981 ◽  
Vol 38 (12) ◽  
pp. 1636-1656 ◽  
Author(s):  
W. E. Ricker

Of the five species of Pacific salmon in British Columbia, chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) are harvested during their growing seasons, while pink salmon (O. gorbuscha), chum salmon (O. keta), and sockeye salmon (O. nerka) are taken only after practically all of their growth is completed. The size of the fish caught, of all species, has decreased, but to different degrees and over different time periods, and for the most part this results from a size decrease in the population. These decreases do not exhibit significant correlations with available ocean temperature or salinity series, except that for sockeye lower temperature is associated with larger size. Chinook salmon have decreased greatly in both size and age since the 1920s, most importantly because nonmaturing individuals are taken by the troll fishery; hence individuals that mature at older ages are harvested more intensively, which decreases the percentage of older ones available both directly and cumulatively because the spawners include an excess of younger fish. Other species have decreased in size principally since 1950, when the change to payment by the pound rather than by the piece made it profitable for the gill-netters to harvest more of the larger fish. Cohos and pinks exhibit the greatest decreases, these being almost entirely a cumulative genetic effect caused by commercial trolls and gill nets removing fish of larger than average size. However, cohos reared in the Strait of Georgia have not decreased in size, possibly because sport trolling has different selection characteristics or because of the increase in the hatchery-reared component of the catch. The mean size of chum and sockeye salmon caught has changed much less than that of the other species. Chums have the additional peculiarity that gill nets tend to take smaller individuals than seines do and that their mean age has increased, at least between 1957 and 1972. That overall mean size has nevertheless decreased somewhat may be related to the fact that younger-maturing individuals grow much faster than older-maturing ones; hence excess removal of the smaller younger fish tends to depress growth rate. Among sockeye the decrease in size has apparently been retarded by an increase in growth rate related to the gradual cooling of the ocean since 1940. However, selection has had two important effects: an increase in the percentage of age-3 "jacks" in some stocks, these being little harvested, and an increase in the difference in size between sockeye having three and four ocean growing seasons, respectively.Key words: Pacific salmon, age changes, size changes, fishery, environment, selection, heritability


ABSTRACT The Lewis and Clark expedition crossed the Continental Divide in 1805 on the way west to the Pacific Ocean. Based on journal entries, members of the expedition probably encountered two species of resident salmonids and four of the six species of anadromous salmonids and steelhead (Family Salmonidae, genus <em>Oncorhynchus</em>). The salmonid species were called common salmon (now known as Chinook salmon <em>O. tshawytscha</em>), red charr (sockeye salmon <em>O. nerka</em>), white salmon trout (coho salmon [also known as silver salmon] <em>O. kisutch</em>), salmon trout (steelhead <em>O. mykiss</em>), and spotted trout (cutthroat trout <em>O. clarkii</em>). There was no evidence of the expedition encountering pink salmon <em>O. gorbuscha</em>, chum salmon <em>O. keta</em>, or species of true char <em>Salvelinus</em> spp. Common fishes procured from Indian tribes living along the lower Columbia River included eulachon <em>Thaleichthys pacificus</em> and white sturgeon <em>Acipenser transmontanus</em>. The identity of three additional resident freshwater species is questionable. Available descriptions suggest that what they called mullet were largescale sucker <em>Catostomus macrocheilus</em>, and that chubb were peamouth <em>Mylocheilus caurinus</em>. The third questionable fish, which they called bottlenose, was probably mountain whitefish <em>Prosopium williamsoni</em>, although there is no evidence that the species was observed in the Columbia River drainage. Missing from the species list were more than 20 other fishes known to Sahaptin-speaking people from the mid-Columbia region. More complete documentation of the icthyofauna of the Pacific Northwest region did not occur until the latter half of the 19th century. However, journals from the Lewis and Clark expedition provide the first documentation of Columbia River fishes.


1988 ◽  
Vol 66 (1) ◽  
pp. 266-273 ◽  
Author(s):  
C. B. Murray ◽  
J. D. McPhail

Embryo and alevin survival, time to hatching and emergence, and alevin and fry size of five species of Pacific salmon (Oncorhynchus) were observed at five incubation temperatures (2, 5, 8, 11, and 14 °C). No pink (Oncorhynchus gorbuscha) or chum (O. keta) salmon embryos survived to hatching at 2 °C. Coho (O. kisutch) and sockeye (O. nerka) salmon had higher embryo survival at 2 °C than chinook (O. tschawytscha) salmon. At 14 °C, chum, pink, and chinook salmon had higher embryo survival than coho or sockeye salmon. In all species, peaks of embryo mortality occurred at specific developmental stages (completion of epiboly, eye pigmentation, and hatching). Alevin survival to emergence was high for all species, except for coho and pink salmon at 14 °C. Hatching and emergence time varied inversely with incubation temperature, but coho salmon hatched and emerged sooner at all temperatures than the other species. Coho and sockeye salmon alevins were larger at 2 °C, pink, chum, and chinook salmon alevins were larger at 5 and 8 °C. Coho salmon fry were larger at 2 °C, chinook and chum salmon fry were larger at 5 °C, and sockeye and pink salmon fry were larger at 8 °C. High incubation temperatures reduced fry size in all species. Each species of Pacific salmon appears to be adapted to different spawning times and temperatures, and thus indirectly to specific incubation temperatures, to ensure maximum survival and size and to maintain emergence at the most favorable time each year.


2017 ◽  
Vol 74 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Kyla M. Jeffrey ◽  
Isabelle M. Côté ◽  
James R. Irvine ◽  
John D. Reynolds

Body size can sometimes change rapidly as an evolutionary response to selection or as a phenotypic response to changes in environmental conditions. Here, we revisit a classic case of rapid change in body size of five species of Pacific salmon (Oncorhynchus spp.) caught in Canadian waters, with a six-decade analysis (1951–2012). Declines in size at maturity of up to 3 kg in Chinook (Oncorhynchus tshawytscha) and 1 kg in coho salmon (Oncorhynchus kisutch) during the 1950s and 1960s were later reversed to match or exceed earlier sizes. In contrast, there has been little change in sockeye salmon (Oncorhynchus nerka) sizes and initial declines in pink (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) sizes have halted. Biomass of competing salmon species contributed to changes in size of all five species, and ocean conditions, as reflected by the North Pacific Gyre Oscillation and the Multivariate ENSO (El Niño – Southern Oscillation) indices, explained variation in four of the species. While we have identified a role of climate and density dependence in driving salmon body size, any additional influence of fisheries remains unclear.


Sign in / Sign up

Export Citation Format

Share Document