Molecular characterization of three mutations in katG affecting the activity of hydroperoxidase I of Escherichia coli

1990 ◽  
Vol 68 (7-8) ◽  
pp. 1037-1044 ◽  
Author(s):  
Peter C. Loewen ◽  
Jacek Switala ◽  
Mark Smolenski ◽  
Barbara L. Triggs-Raine

Hydroperoxidase I (HPI) of Escherichia coli is a bifunctional enzyme exhibiting both catalase and peroxidase activities. Mutants lacking appreciable HPI have been generated using nitrosoguanidine and the gene encoding HPI, katG, has been cloned from three of these mutants using either classical probing methods or polymerase chain reaction amplification. The mutant genes were sequenced and the changes from wild-type sequence identified. Two mutants contained G to A changes in the coding strand, resulting in glycine to aspartate changes at residues 119 (katG15) and 314 (katG16) in the deduced amino acid sequence of the protein. A third mutant contained a C to T change resulting in a leucine to phenylalanine change at residue 139 (katG14). The Phe139-, Asp119-, and Asp314-containing mutants exhibited 13, < 1, and 18%, respectively, of the wild-type catalase specific activity and 43, 4, and 45% of the wild-type peroxidase specific activity. All mutant enzymes bound less protoheme IX than the wild-type enzyme. The sensitivities of the mutant enzymes to the inhibitors hydroxylamine, azide, and cyanide and the activators imidazole and Tris were similar to those of the wild-type enzyme. The mutant enzymes were more sensitive to high temperature and to β-mercaptoethanol than the wild-type enzyme. The pH profiles of the mutant catalases were unchanged from the wild-type enzyme.Key words: catalase, hydroperoxidase I, mutants, sequence analysis.

1999 ◽  
Vol 181 (10) ◽  
pp. 3010-3017 ◽  
Author(s):  
Heather A. Cook ◽  
Carol A. Kumamoto

ABSTRACT SecB is a cytosolic protein required for rapid and efficient export of particular periplasmic and outer membrane proteins inEscherichia coli. SecB promotes export by stabilizing newly synthesized precursor proteins in a nonnative conformation and by targeting the precursors to the inner membrane. Biochemical studies suggest that SecB facilitates precursor targeting by binding to the SecA protein, a component of the membrane-embedded translocation apparatus. To gain more insight into the functional interaction of SecB and SecA, in vivo, mutations in the secA locus that compensate for the export defect caused by the secBmissense mutation secBL75Q were isolated. Two suppressors were isolated, both of which led to the overproduction of wild-type SecA protein. In vivo studies demonstrated that the SecBL75Q mutant protein releases precursor proteins at a lower rate than does wild-type SecB. Increasing the level of SecA protein in the cell was found to reverse this slow-release defect, indicating that overproduction of SecA stimulates the turnover of SecBL75Q-precursor complexes. These findings lend additional support to the proposed pathway for precursor targeting in which SecB promotes targeting to the translocation apparatus by binding to the SecA protein.


1990 ◽  
Vol 271 (2) ◽  
pp. 487-491 ◽  
Author(s):  
A Hädener ◽  
P R Alefounder ◽  
G J Hart ◽  
C Abell ◽  
A R Battersby

A new construct carrying the hemC gene was transformed into Escherichia coli, resulting in approx. 1000-fold over-expression of hydroxymethylbilane synthase (HMBS). This construct was used to generate HMBS in which (a) Lys-55, (b) Lys-59 and (c) both Lys-55 and Lys-59 were replaced by glutamine (K55Q, K59Q and K55Q-K59Q respectively). All three modified enzymes are chromatographically separable from wild-type enzyme. Kinetic studies showed that the substitution K55Q has little effect whereas K59Q causes a 25-fold decrease in Kapp. cat./Kapp. m. Treatment of K55Q, K59Q and K55Q-K59Q separately with pyridoxal 5′-phosphate and NaBH4 resulted in incomplete and non-specific reaction with the remaining lysine residues. Pyridoxal modification of Lys-59 in the K55Q mutant caused greater enzymic inactivation than similar modification of Lys-55 in K59Q. The results in sum show that, though Lys-55 and Lys-59 may be at or near the active site, neither is indispensable for the catalytic activity of HMBS.


2010 ◽  
Vol 77 (3) ◽  
pp. 762-767 ◽  
Author(s):  
Soo-Jin Yeom ◽  
Eun-Sun Seo ◽  
Bi-Na Kim ◽  
Yeong-Su Kim ◽  
Deok-Kun Oh

ABSTRACTAn uncharacterized gene fromThermus thermophilus, thought to encode a mannose-6-phosphate isomerase, was cloned and expressed inEscherichia coli. The maximal activity of the recombinant enzyme forl-ribulose isomerization was observed at pH 7.0 and 75°C in the presence of 0.5 mM Cu2+. Among all of the pentoses and hexoses evaluated, the enzyme exhibited the highest activity for the conversion ofl-ribulose tol-ribose, a potential starting material for manyl-nucleoside-based pharmaceutical compounds. The active-site residues, predicted according to a homology-based model, were separately replaced with Ala. The residue at position 142 was correlated with an increase inl-ribulose isomerization activity. The R142N mutant showed the highest activity among mutants modified with Ala, Glu, Tyr, Lys, Asn, or Gln. The specific activity and catalytic efficiency (kcat/Km) forl-ribulose using the R142N mutant were 1.4- and 1.6-fold higher than those of the wild-type enzyme, respectively. Thekcat/Kmof the R142N mutant was 3.8-fold higher than that ofGeobacillus thermodenitrificansmannose-6-phosphate isomerase, which exhibited the highest activity to date for the previously reportedkcat/Km. The R142N mutant enzyme produced 213 g/literl-ribose from 300 g/literl-ribulose for 2 h, with a volumetric productivity of 107 g liter−1h−1, which was 1.5-fold higher than that of the wild-type enzyme.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1208 ◽  
Author(s):  
Mohamed H. Habib ◽  
Henriëtte J. Rozeboom ◽  
Marco W. Fraaije

DyP-type peroxidases are heme-containing enzymes that have received increasing attention over recent years with regards to their potential as biocatalysts. A novel DyP-type peroxidase (CboDyP) was discovered from the alkaliphilic cellulomonad, Cellulomonas bogoriensis, which could be overexpressed in Escherichia coli. The biochemical characterization of the recombinant enzyme showed that it is a heme-containing enzyme capable to act as a peroxidase on several dyes. With the tested substrates, the enzyme is most active at acidic pH values and is quite tolerant towards solvents. The crystal structure of CboDyP was solved which revealed atomic details of the dimeric heme-containing enzyme. A peculiar feature of CboDyP is the presence of a glutamate in the active site which in most other DyPs is an aspartate, being part of the DyP-typifying sequence motif GXXDG. The E201D CboDyP mutant was prepared and analyzed which revealed that the mutant enzyme shows a significantly higher activity on several dyes when compared with the wild-type enzyme.


Biochemistry ◽  
1991 ◽  
Vol 30 (46) ◽  
pp. 11073-11080 ◽  
Author(s):  
Jeffrey O. Boles ◽  
Ralph J. Cisneros ◽  
Mary S. Weir ◽  
Jerome D. Odom ◽  
J. E. Villafranca ◽  
...  

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 647-656
Author(s):  
William B Eggleston ◽  
Nac R Rim ◽  
Johng K Lim

Abstract The structure of chromosomal inversions mediated by hobo transposable elements in the Uc-1 X chromosome was investigated using cytogenetic and molecular methods. Uc-1 contains a phenotypically silent hobo element inserted in an intron of the Notch locus. Cytological screening identified six independent Notch mutations resulting from chromosomal inversions with one breakpoint at cytological position 3C7, the location of Notch. In situ hybridization to salivary gland polytene chromosomes determined that both ends of each inversion contained hobo and Notch sequences. Southern blot analyses showed that both breakpoints in each inversion had hobo-Notch junction fragments indistinguishable in structure from those present in the Uc-1 X chromosome prior to the rearrangements. Polymerase chain reaction amplification of the 12 hobo-Notch junction fragments in the six inversions, followed by DNA sequence analysis, determined that each was identical to one of the two hobo-Notch junctions present in Uc-1. These results are consistent with a model in which hobo-mediated inversions result from homologous pairing and recombination between a pair of hobo elements in reverse orientation.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


2021 ◽  
Vol 15 (1) ◽  
pp. 129-138
Author(s):  
Raegan S. Hoefler ◽  
Indira T. Kudva

Background: Differences between Escherichia coli O157 (O157) strains are well-established with some of these strains being associated with major outbreaks in the US. EDL933 is one such O157 strain that caused a multistate outbreak in 1982 and has since been used as a prototype in various O157-related experiments. Objective: As O157 can readily acquire genetic mutations, we sought to determine if the genetic and phenotypic profiles of EDL933 strains from different sources would be consistent. Methods: We evaluated wild-type O157 strains stocked as EDL933 from three different laboratories, in the strain typing Polymorphic Amplified Typing Sequence (PATS) and the bovine rectal-anal junction squamous epithelial (RSE) cell- and HEp-2 cell- adherence assays. In addition, we also verified if Shiga toxins (Stx), the Locus of Enterocyte Effacement (LEE) or curli fimbriae contributed to the adherence phenotypes observed using mutant and wild-type EDL933 isolates. Results: Our results showed differences in PATS profiles and RSE cell-adherence phenotype, with no influence from the Stx or LEE genes, between EDL933 from different sources. Interestingly, the EDL933 strain that demonstrated the most contrasting diffuse adherence phenotype on RSE cells, EDL933-T, had decreased curli production that may have contributed to this phenotype. Conclusion: Our observations suggest that a comprehensive characterization of bacterial isolates, even if assigned to the same strain type prior to use in experiments, is warranted to ensure consistency and reproducibility of results.


Sign in / Sign up

Export Citation Format

Share Document