Muon interactions in the energy range 5 to 1 000 GeV

1968 ◽  
Vol 46 (10) ◽  
pp. S365-S368 ◽  
Author(s):  
G. N. Kelly ◽  
P. K. MacKeown ◽  
S. S. Said ◽  
A. W. Wolfendale

The Durham Horizontal Spectrograph has been used to study the variation with energy of the frequency of electromagnetic interactions of muons. A considerable increase in the frequency of occurrence of electromagnetic showers with muon energy is observed and is attributable in the main to direct pair production. The form of the variation with energy of the interaction probabilities and the frequency of successive interactions of the same particle are consistent with all the particles being muons, and it is concluded that there is no evidence in favor of the existence of particles having an unusually high probability of burst production–the X particles postulated by Vernov et al. (1966)–at least in the near-horizontal cosmic-ray beam at ground level.

2020 ◽  
Vol 63 (6) ◽  
Author(s):  
Alejandra Vesga-Ramírez ◽  
David Sierra Porta ◽  
Jesús Peña Rodríguez ◽  
José Sanabria-Gómez ◽  
Martha Valencia-Otero ◽  
...  

By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo-magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is modeled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production. By examining each particular volcano topography and assuming reasonable statistics for different instrument acceptances, we obtained the muon flux crossing each structure and estimated the exposure time for our hybrid muon telescope at several points around each geological edifice. After a detailed study from the topography, we have identified the best volcano to be studied, spotted the best points to place a muon telescope and estimated its time exposures for a significant statistics of muon flux. We have devised a mix of technical and logistic rules –the “rule of thumb” criteria– and found that only Cerro Machín, located at the Cordillera Central (4°29'N 75°22'W), can be feasibly studied today through muography. Cerro Negro and Chiles could be good candidates shortly.


1984 ◽  
Vol 37 (5) ◽  
pp. 575 ◽  
Author(s):  
DP Bhattacharyya ◽  
Pratibha Pal ◽  
A Mukhopadhyay

The muon intensities in sea-water depths up to 1400 M.W.E. have been derived from a recent primary cosmic ray spectrum. The scaling hypothesis of Feynman has been used in the calculation of meson spectra in the atmosphere. The range-energy relation for muons in sea water, used in the present work, accounts for the muon energy loss in sea water due to collisions, pair production, bremsstrahlung and nuclear interactions. The calculated muon range spectrum in sea water is well in accord with the experimental data obtained by Higashi et al. (1966), Davitaev et al. (1969), and Rogers and Tristam (1981, 1983


1996 ◽  
Vol 14 (11) ◽  
pp. 1119-1123 ◽  
Author(s):  
O. I. Shumilov ◽  
E. A. Kasatkina ◽  
K. Henriksen ◽  
E. V. Vashenyuk

Abstract. The lidar measurements at Verhnetulomski observatory (68.6°N, 31.8°E) at Kola peninsula detected a considerable increase of stratospheric aerosol concentration after the solar proton event of GLE (ground level event) type on the 16/02/84. This increase was located at precisely the same altitude range where the energetic solar protons lost their energy in the atmosphere. The aerosol layer formed precipitated quickly (1–2 km per day) during 18, 19, and 20 February 1984, and the increase of R(H) (backscattering ratio) at 17 km altitude reached 40% on 20/02/84. We present the model calculation of CN (condensation nuclei) altitude distribution on the basis of an ion-nucleation mechanism, taking into account the experimental energy distribution of incident solar protons. The meteorological situation during the event was also investigated.


2019 ◽  
Vol 5 (3) ◽  
pp. 68-74
Author(s):  
Евгений Маурчев ◽  
Evgeniy Maurchev ◽  
Юрий Балабин ◽  
Yuriy Balabin ◽  
Алексей Германенко ◽  
...  

This paper explores the applied use of the RUSCOSMICS software package [http://ruscosmics.ru] designed to simulate propagation of primary cosmic ray (CR) particles through Earth’s atmosphere and collect information about characteristics of their secondary component. We report the results obtained for proton fluxes with energy distributions corresponding to the differential spectra of galactic CR (GCR) and solar CR (SCR) during ground level enhancement (GLE) events GLE65 and GLE67. We examine features of the geometry of Earth’s atmosphere, parametrization methods, and describe a primary particle generator. The typical energy spectra of electrons obtained both for GCR and for GLE65 provide information that allows us to quantitatively estimate the SCR contribution to the enhancement of secondary CR fluxes. We also present altitude dependences of ionization rate for GCR and both the GLE events for several geomagnetic cutoff rigidity values. The conclusion summarizes and discusses the prospects for future research.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.


1991 ◽  
Vol 14 (1) ◽  
pp. 53-60 ◽  
Author(s):  
M. Alessio ◽  
L. Allegri ◽  
D. Fargion ◽  
S. Improta ◽  
N. Iucci ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document