Characterization of a smear zone around vertical drains by large-scale laboratory tests

2000 ◽  
Vol 37 (6) ◽  
pp. 1265-1271 ◽  
Author(s):  
J S Sharma ◽  
D Xiao

Installation of prefabricated vertical drains using a mandrel causes disturbance of clay surrounding the drain, resulting in a "smear" zone of reduced permeability. In this paper, an attempt is made to characterize the smear zone using large-scale laboratory model tests. Two tests, simulating the cases of "no smear" and "with smear," were conducted. Excess pore-water pressures were monitored at seven different locations along the radial direction. In addition, undisturbed samples were collected at various locations in the clay layer for conducting oedometer tests. The distribution of excess pore pressure due to drain installation gave a clear indication of the extent of the smear zone. The effect of reconsolidation on the properties of clay was found to be much greater than that of the remoulding of the clay. The extent of the smear zone was also confirmed from the change in permeability of the clay layer in the smear zone obtained from oedometer tests. The radius of the smear zone is about four times that of the mandrel, and the horizontal permeability of the clay layer in the smear zone is approximately 1.3 times smaller than that in the intact zone.Key words: consolidation, permeability, smear zone, soft clay, vertical drains.

2021 ◽  
Author(s):  
Xueyu Geng

Dredging slurry is treated by a combination of lime treatment and vacuum preloading. However, the mechanical characteristics and consolidation mechanics of lime-treated slurry under vacuum loading is not fully understood, making it difficult to predict slurry settlement. In this study, we develop a laboratory model of lime-treated slurry and subject it to vacuum preloading to investigate the compression and consolidation behaviors. The results demonstrate the reduction of the risk of clogging around the prefabricated vertical drains, the increase in soil permeability, and the improvement of vacuum preloading upon lime treatment. log (1 + e)-log p curves for soils with different percentages of lime content are obtained through a series of modified oedometer tests. Based on these curves, an analytical solution for lime-treated slurry settlement under vacuum preloading was derived and validated through laboratory tests. The solution can be used to predict lime-treated slurry settlement under vacuum pressure effectively.


2011 ◽  
Vol 197-198 ◽  
pp. 981-986
Author(s):  
Jie Qun Liu ◽  
Jin Long Liu

Based on the generalized formulation of two dimensional Biot′s theory of consolidation, the effect of geotextile and prefabricated vertical drains (PVDs) using in soft soil foundation was studied with nonlinear finite element method. The dissipation of excess pore pressure, vertical settlement and lateral displacement of foundation were contrasted between foundations with and without PVDs. It is found that the vertical settlements become lager, the lateral displacements become less and the bulges at the toe of embankment become less at the same time of consolidation when PVDs are used. And the stability of embankment improved for the bearing capacity of soil enhanced with excess pore pressure dissipated fast. Meanwhile, the axial force of geotextile become less when PVDs are used. Those changes showed that the design of foundation can be optimized by shortening the time of consolidation when PVDs are used.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao Guo ◽  
Kang-He Xie ◽  
Yue-Bao Deng

This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1) the flow with the threshold gradient would not occur instantaneously throughout the whole unit cell. Rather, it gradually occurs from the vertical drain to the outside; (2) the moving boundary would never reach the outer radius of influence ifR+1<n, whereas it will reach the outer radius of influence at some time; (3) the excess pore pressure will not be dissipated completely, but it will maintain a long-term stable value at the end of consolidation; (4) the larger the threshold gradient is, the greater the long-term excess pore pressure will be; and (5) the present solution could predict the consolidation behavior in soft clay better than previous methods.


2019 ◽  
Vol 37 (4) ◽  
pp. 1213-1236 ◽  
Author(s):  
Trong Nghia-Nguyen ◽  
Sanjay Kumar Shukla ◽  
Dang Dinh Chung Nguyen ◽  
Le Gia Lam ◽  
Phuoc H-Dang ◽  
...  

Purpose This paper aims to present a new discrete method to predict average excess pore pressure and degree of consolidation for soft ground using prefabricated vertical drains under time-dependent surcharge and/or vacuum loading and multi-soil layers. Design/methodology/approach The drain is discretized into a number of mesh points at which the average excess pore pressure is estimated. The conventional Laplace technique is used to solve the analytical equations. The proposed method is validated with previous findings reported in the literature. Moreover, field measurements are used to verify the accuracy of the proposed method with a case history of ground improvement by prefabricated vertical drains using the vacuum consolidation technique. Findings In comparison to past studies, this new discrete method is simpler to be implemented in a spreadsheet calculation to achieve a rational solution with less computational time for similar consolidation problems. Moreover, the current approach also incorporates a solution for multi-soil layers, which can hardly be derived by analytical solutions. Originality/value According to authors’ knowledge, this is the first-time discrete method by Laplace transform technique is applied for the vertical drain.


2021 ◽  
Vol 9 (8) ◽  
pp. 797
Author(s):  
Shu Lin ◽  
Dengfeng Fu ◽  
Zefeng Zhou ◽  
Yue Yan ◽  
Shuwang Yan

Vacuum preloading combined with prefabricated vertical drains (PVDs) has the potential to improve the soft sediments under water, however, its development is partly limited by the unclear understanding of the mechanism. This paper aims to extend the comprehension of the influential mechanism of overlapping water in the scenario of underwater vacuum preloading with PVDs. The systematic investigations were conducted by small strain finite element drained analyses, with the separated analysis schemes considering suction-induced consolidation, seepage and their combination. The development of settlement in the improved soil region and the evolution of seepage flow from the overlapping water through the non-improved soil region into improved zone are examined in terms of the build-up of excess pore pressure. Based on the results of numerical analyses, a theoretical approach was set out. It was capable to estimate the time-dependent non-uniform settlement along the improved soil surface in response to the combined effects of suction-induced consolidation and seepage. The difference of underwater and onshore vacuum preloading with PVDs is discussed with some practical implication and suggestion provided.


2016 ◽  
Vol 723 ◽  
pp. 843-848
Author(s):  
Yi Wei ◽  
Ying Zhu ◽  
Jing Ni

The combined effect of cyclic and static loads on the mechanical properties of the soft clay was experimentally investigated by conducting undrained cyclic triaxial tests on Shanghai clay. The results show that an increment in either static or cyclic load increases excess pore pressures and axial strains. For a given value of combined cyclic and static loads, the mechanical properties of the soft clay are more sensitive to the cyclic load. Furthermore, the accumulated excess pore pressure and axial strain for a larger cyclic stress ratio and a lower combined stress ratio might overcome that for a lower cyclic stress ratio and a higher combined stress ratio. The mechanical properties of the soft clay after the cyclic load was unloaded were also discussed. It was observed that the excess pore pressure and axial strain under the static load alone decrease gradually with time. The trend of them largely depends on the ratio of cyclic load to static load.


Author(s):  
Gonzalo García Ros ◽  
Manuel Cánovas Vidal ◽  
Juan Francisco Sánchez Pérez ◽  
Iván Alhama Manteca

The educational tool SICOMED_3D has been created to simulate problems of soil consolidation by prefabricated vertical drains. Thanks to its nice interface of windows, the introduction of data is very fast and easy for the students, while providing users with simple handling and powerful calculations. Its graphical environment allows to get representations of the excess pore pressure, local settlements and total surface settlement. SICOMED_3D can also generate an animation that recreates the evolution of the surface settlement during the consolidation process. The software presents, like commercial softwares, the most common options (e.g., save and open cases files, save animations and representations, etc.). Although the program is created to be used in several fields, among others as an engineering or research tool, the main use of interest for this work is for educational purposes. Another important application is as low-cost laboratory practices, as students can experiment by modifying the soil properties, including the depth of penetration of the vertical drain, in a quick, simple and intuitive way.


Sign in / Sign up

Export Citation Format

Share Document