depth of penetration
Recently Published Documents


TOTAL DOCUMENTS

792
(FIVE YEARS 233)

H-INDEX

36
(FIVE YEARS 4)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Xinyi Xiao ◽  
Clarke Waddell ◽  
Carter Hamilton ◽  
Hanbin Xiao

Wire arc additive manufacturing (WAAM) is capable of rapidly depositing metal materials thus facilitating the fabrication of large-shape metal components. However, due to the multi-process-variability in the WAAM process, the deposited shape (bead width, height, depth of penetration) is difficult to predict and control within the desired level. Ultimately, the overall build will not achieve a near-net shape and will further hinder the part from performing its functionality without post-processing. Previous research primarily utilizes data analytical models (e.g., regression model, artificial neural network (ANN)) to forwardly predict the deposition width and height variation based on single or cross-linked process variables. However, these methods cannot effectively determine the optimal printable zone based on the desired deposition shape due to the inability to inversely deduce from these data analytical models. Additionally, the process variables are intercorrelated, and the bead width, height, and depth of penetration are highly codependent. Therefore, existing analysis cannot grant a reliable prediction model that allows the deposition (bead width, height, and penetration height) to remain within the desired level. This paper presents a novel machine learning framework for quantitatively analyzing the correlated relationship between the process parameters and deposition shape, thus providing an optimal process parameter selection to control the final deposition geometry. The proposed machine learning framework can systematically and quantitatively predict the deposition shape rather than just qualitatively as with other existing machine learning methods. The prediction model can also present the complex process-quality relations, and the determination of the deposition quality can guide the WAAM to be more prognostic and reliable. The correctness and effectiveness of the proposed quantitative process-quality analysis will be validated through experiments.


Author(s):  
Larisa Tretiakova ◽  
Liudmyla Mitiuk ◽  
Igor Panasiuk ◽  
Elina Rebuel

The problem of production waste storage in open areas of an enterprise with a galvanic shop for the production of chips and microchips has been investigated. The composition of the sludge obtained after sewage treatment of the production of the copper line was investigated. The aim of the article is to develop a mathematical model for predicting the distribution of compounds with heavy metals in the soil during long-term storage of galvanic sludge in open areas. Modeling the process of movement of salts from the earth's surface into the lower layers of the aeration zone occurs according to the laws of molecular diffusion. The method is developed on the basis of a mathematical model that makes it possible to estimate the spread over the depth of the ground and level of soil salinity over time using initial information about soil structure and its characteristics (molecular diffusion coefficient, volume humidity), annual volumes and conditions of sludge storage in the enterprise. Restrictions are set: the presence of harmful substances on the soil surface with a concentration that exceeds the permissible level; inadmissibility of harmful substances to aquifers. The practical use of the method made it possible to identify the main dangers during long-term storage of galvanic waste in open areas. The dynamics of soil salinity levels and the depth of penetration of heavy metals increase over twenty years of conservation has been determined, as well as the possibility of hazardous compounds entering groundwater has been assessed. Polyvinyl chloride packaging has a maximum life span of 15 years. Waste should not be stored in packages and in closed areas for more than 10 years. According to the prediction results, it can be stated that storage in landfills of galvanic waste for more than 15 years leads to significant salinization of the soil and creates conditions for an emergency situation, which is caused by harmful substances entering the water horizons. Recommendations for improving storage conditions are given and the need for recycling of industrial waste is substantiated


2022 ◽  
Vol 14 (2) ◽  
pp. 708
Author(s):  
Miren Etxeberria ◽  
Mikhail Konoiko ◽  
Carles Garcia ◽  
Miguel Ángel Perez

The use of recycled aggregate to reduce the over-exploitation of raw aggregates is necessary. This study analysed and categorised the properties of water-washed, fine and coarse, recycled aggregates following European Normalization (EN) specification. Because of their adequate properties, zero impurities and chemical soluble salts, plain recycled concrete was produced using 100% recycled concrete aggregates. Two experimental phases were conducted. Firstly, a laboratory phase, and secondly, an on-site work consisting of a real-scale pavement-base layer. The workability of the produced concretes was validated using two types of admixtures. In addition, the compressive and flexural strength, physical properties, drying shrinkage and depth of penetration of water under pressure validated the concrete design. The authors concluded that the worksite-produced concrete properties were similar to those obtained in the laboratory. Consequently, the laboratory results could be validated for large-scale production. An extended slump value was achieved using 2.5–3% of a multifunctional admixture plus 1–1.2% of superplasticiser in concrete production. In addition, all the produced concretes obtained the required a strength of 20 MPa. Although the pavement-base was produced using 300 kg of cement, the concrete made with 270 kg of cement per m3 and water/cement ratio of 0.53 achieved the best properties with the lowest environmental impact.


2022 ◽  
Author(s):  
V.V. Ovchinnikov

Abstract. The article presents the results of the influence of the technology of obtaining the material of the cathode of the implanter of the Cu – Fe system on the penetration depth of the titanium alloy VT20. It is shown that the use of 50% Cu – 50% Fe material as the material of the cathode of the implanter, obtained by alloying copper and iron, leads to a better increase in the thickness of the ion-doped layer than the use of the cathode obtained by powder metallurgy.


2022 ◽  
Author(s):  
A.N. Unyanin

Abstract. Analytically, the dependences for calculating the grinding forces with flap wheels are obtained. The forces were defined as the sum of the forces associated with dispersion and friction of the cutting and plastically deforming petal grains against the workpiece. The dependencies take into account the change in the depth of penetration of the grain into the workpiece material along the length of the arc of the contact of the circle with the workpiece. Numerical modeling and experimental study of forces have been carried out. The discrepancy between the calculated and experimental values of the forces does not exceed 20%.


2022 ◽  
Vol 41 (1) ◽  
pp. 34-39
Author(s):  
Vincent Durussel ◽  
Dongren Bai ◽  
Amin Baharvand Ahmadi ◽  
Scott Downie ◽  
Keith Millis

The depth of penetration and multidimensional characteristics of seismic waves make them an essential tool for subsurface exploration. However, their band-limited nature can make it difficult to integrate them with other types of ground measurements. Consequently, far offsets and very low-frequency components are key factors in maximizing the information jointly inverted from all recorded data. This explains why extending seismic bandwidth and available offsets has become a major industry focus. Although this requirement generally increases the complexity of acquisition and has an impact on its cost, improvements have been clearly and widely demonstrated on marine data. Onshore seismic data have generally followed the same trend but face different challenges, making it more difficult to maximize the benefits, especially for full-waveform inversion (FWI). This paper describes a new dense survey acquired in 2020 in the Permian Basin and aims to objectively assess the quality and benefits brought by a richer low end of the spectrum and far offsets. For this purpose, we considered several aspects, from acquisition design and field data to FWI imaging and quantitative interpretation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13616
Author(s):  
Jorge Cantero ◽  
Fabio Polticelli ◽  
Margot Paulino

Coloring is one of the most important characteristics in commercial flowers and fruits, generally due to the accumulation of carotenoid pigments. Enzymes of the CCD4 family in citrus intervene in the generation of β-citraurin, an apocarotenoid responsible for the reddish-orange color of mandarins. Citrus CCD4s enzymes could be capable of interacting with the thylakoid membrane inside chloroplasts. However, to date, this interaction has not been studied in detail. In this work, we present three new complete models of the CCD4 family members (CCD4a, CCD4b, and CCD4c), modeled with a lipid membrane. To identify the preference for substrates, typical carotenoids were inserted in the active site of the receptors and the protein–ligand interaction energy was evaluated. The results show a clear preference of CCD4s for xanthophylls over aliphatic carotenes. Our findings indicate the ability to penetrate the membrane and maintain a stable interaction through the N-terminal α-helical domain, spanning a contact surface of 2250 to 3250 Å2. The orientation and depth of penetration at the membrane surface suggest that CCD4s have the ability to extract carotenoids directly from the membrane through a tunnel consisting mainly of hydrophobic residues that extends up to the catalytic center of the enzyme.


2021 ◽  
Vol 22 (24) ◽  
pp. 13563
Author(s):  
Sergey Tikhonov ◽  
Petr Ostroverkhov ◽  
Nikita Suvorov ◽  
Andrey Mironov ◽  
Yulia Efimova ◽  
...  

Photodynamic therapy (PDT) is currently one of the most promising methods of cancer treatment. However, this method has some limitations, including a small depth of penetration into biological tissues, the low selectivity of accumulation, and hypoxia of the tumor tissues. These disadvantages can be overcome by combining PDT with other methods of treatment, such as radiation therapy, neutron capture therapy, chemotherapy, etc. In this work, potential drugs were obtained for the first time, the molecules of which contain both photodynamic and chemotherapeutic pharmacophores. A derivative of natural bacteriochlorophyll a with a tin IV complex, which has chemotherapeutic activity, acts as an agent for PDT. This work presents an original method for obtaining agents of combined action, the structure of which is confirmed by various physicochemical methods of analysis. The method of molecular modeling was used to investigate the binding of the proposed drugs to DNA. In vitro biological tests were carried out on several lines of tumor cells: Hela, A549, S37, MCF7, and PC-3. It was shown that the proposed conjugates of binary action for some cell lines had a dark cytotoxicity that was significantly higher (8–10 times) than the corresponding metal complexes of amino acids, which was explained by the targeted chemotherapeutic action of the tin (IV) complex due to chlorin. The greatest increase in efficiency relative to the initial dipropoxy-BPI was found for the conjugate with lysine as a chelator of the tin cation relative to cell lines, with the following results: S-37 increased 3-fold, MCF-7 3-fold, and Hela 2.4-fold. The intracellular distribution of the obtained agents was also studied by confocal microscopy and showed a diffuse granular distribution with predominant accumulation in the near nuclear region.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fengling Zhang ◽  
Rui Zhong

This paper presents an experimental investigation on the influence of calcined bauxite aggregate (CBA) on the resistance of cement composites subjected to small caliber deformable projectile impact at a designed velocity of 400 m/s. The deformable projectile was made from copper with a purity of 99.5% and a diameter of 8.0 mm. Compared to mixtures with conventional coarse granite aggregate and/or siliceous fine aggregate, the incorporation of either fine or coarse CBA or their combination is beneficial in reducing the depth of penetration (DOP), equivalent crater diameter (CD), and crater volume (CV) caused by deformable projectile impact. CBA is found to be more effective in controlling the DOP and CV in comparison to the CD. Replacing of conventional aggregate with CBA leads to more severe damage to the projectiles (e.g., projectile length reduction, diameter increase, and mass loss). Relative effective hardness is an effective indicator to the deformation potential and penetration capacity of a deformable projectile to impact cement composites incorporating CBA.


2021 ◽  

Abstract This paper presents an experimental study of abrasive waterjet turning of an extrusion aluminum alloy (AlMg0,7Si). The aim of the paper is to determine differences of two methods from the point of view of machined surface quality and the depth of penetration, i.e., the diameter of the parts after the turning process. During the experiments, the traverse speed of the cutting head and the rotation of the turned parts were changed, other parameters, like pressure of the water, abrasive mass flow rate were kept constant. Diameter and some surface roughness parameters of the test parts were measured after the machining. On the base of experimental results, advantages, and disadvantages of two methods are explained in the paper.


Sign in / Sign up

Export Citation Format

Share Document