Shear strength of the weathered Champlain clay measured in a large diameter triaxial test

1982 ◽  
Vol 19 (4) ◽  
pp. 413-420
Author(s):  
J. Lafleur ◽  
G. Lefebvre ◽  
M. Marcotte ◽  
V. Silvestri

This paper describes the sampling procedure and the results of large diameter (150 mm) CID triaxial tests made on samples recovered from the weathered clay crust of the Champlain sea deposits.A visual inspection of the fissures at the depth of sampling (3 m) revealed two types of discontinuities: (a) sub-vertical joints containing black organic matter, spaced approximately every 10 cm, and (b) closed microfissures, randomly distributed in spacing and direction. In order to recover unremoulded samples of this material and avoid a difficult retrimming in the laboratory, a double core barrel 150 mm in diameter (the same as that of the triaxial cell base) was used. Eight compression tests under low confining stresses were made; they showed that the post-peak strength parameters were substantially higher than those back-calculated from a landslide involving the same weathered crust. Examination of the shape of the failure planes and of the stress–strain curves led to the conclusion that, in spite of the large sample size, the propagation of the fractures was controlled by the intact clay matrix rather than by the fissures. Since this was not believed to reproduce the actual field behaviour, a complementary test programme was undertaken, which indicated that the strength parameters were better evaluated from CID tests performed in the normally consolidated range. Keywords: fissured clays, weathering, landslides, triaxial test, shear strength parameters, sampling, back-analysis.

2002 ◽  
Vol 39 (5) ◽  
pp. 1075-1087 ◽  
Author(s):  
Faten Saihi ◽  
Serge Leroueil ◽  
Pierre La Rochelle ◽  
Ivan French

The role of the degree of microstructure on the behaviour of clayey soils has been the focus of many studies. However, none so far have quantified the evolution of the shear strength parameters for a given soil for degrees of microstructure going from an intact condition to complete remoulding. In the present study, a series of compression triaxial tests have been performed on specimens of the naturally highly structured Saint-Jean-Vianney clay under the following conditions: intact, destructured by straining outside the limit state curve, and reconstituted and reconsolidated after complete remoulding. The results show that the limit state curve is influenced by the level of destructuration reached before testing, and moreover, that the shear strength parameters at large deformation are influenced by the level of destructuration at the beginning of the test. The compression tests infer that the soil seems to retain the memory of its initial microstructure, at least for consolidation volumetric strains up to 14%. The observed behaviour has implications for the understanding and modelling of natural clays; it also explains to some extent the difference in strength parameters used in stability analyses of embankments on soft clays and natural slopes in clay.Key words: clay, microstructure, destructuration, shear strength, large deformation shear strength, triaxial test.


1979 ◽  
Vol 16 (1) ◽  
pp. 140-151 ◽  
Author(s):  
R. A. Widger ◽  
D. G. Fredlund

A common occurrence in cuts or fills of swelling soils is their reduction in strength with time. At the time of compaction, the clay generally has a high matrix suction. Correspondingly, it has a high strength and will stand at relatively steep side slopes. With time, the soil generally tends towards saturation and the matrix suction reduces towards zero. There is a reduction in total strength and if the gravitational forces are too large, the slope fails.During the past several years, numerous cut and fill slopes have been observed in the Regina area of Saskatchewan. Many of these slopes have remained stable for 4–6 years and then failed. There has been a 20 year history of observations on the Belle Plaine overpass west of Regina. Field and laboratory investigations have been conducted.With a knowledge of the geometry of the slope and failure plane, the simplified Bishop method of stability analysis was used to perform a 'back-analysis' to assess the shear strength parameters. The shear strength parameters from the laboratory program are compared with those calculated from the stability analyses. The analyses indicate that the peak shear strength parameters from triaxial tests on the softened Regina clay (i.e., c' = 5 kPa and [Formula: see text]), with the appropriate pore water pressures, give a factor of safety of 1 for the failed surface. The effect of spring thawing appears to be to produce the condition of most serious pore water pressures.


2015 ◽  
Vol 52 (6) ◽  
pp. 732-746 ◽  
Author(s):  
Tarek Omar ◽  
Abouzar Sadrekarimi

Triaxial tests are often used to determine the behavior and strength characteristics of soils without due attention to the differences in specimen size. Several drained and undrained monotonic triaxial compression shear tests are performed in this study on three different specimen sizes of the same sand to investigate the influence of specimen size and scale effect on sand compression and shear behavior. The behavior of a sand specimen is strongly influenced by shear banding and specimen boundary conditions, which are manifested as specimen size effects in the test results of this study. The measured sand compressibility and shear strength parameters are employed to describe scale effects, and investigate specimen size effects in liquefaction triggering analysis. The results show that while larger specimens exhibit a less compressible behavior during isotropic compression, larger shear strengths and effective friction angles are mobilized in the smaller specimens during shearing. A number of geotechnical analyses can be significantly affected by variations in strength parameters of the same soil determined from different specimen sizes. While using small size specimens for determining shear strength parameters might result in an unconservative design, a large specimen size provides a more accurate representation of different soil strength conditions and field deformations.


Author(s):  
Sara Fayek ◽  
Xiaolong Xia ◽  
Lin Li ◽  
Xiong Zhang

Triaxial tests are used extensively to evaluate stress-strain behavior for both saturated and unsaturated soils. A literature review indicates that all conventional triaxial test methods measure the relative volume of soil; however, between the initial measurements and the start of the triaxial tests, there are unavoidably disturbances during installation that cause deviation of soil volume from that at the initial condition. Recently image-based methods have been developed to measure the absolute volume of soil specimens. However, these methods still have a major limitation in their inability to determine top and bottom boundaries between the soil specimen, and the top and bottom caps. This paper proposes a photogrammetry-based method to overcome this limitation by developing a mathematically rigorous technique to determine the upper and lower boundaries of soil specimens during triaxial testing. The photogrammetry technique was used to determine the orientations of the camera, and the shape and location of the acrylic cell. Multiple ray-tracings and least-square optimization techniques were also applied to obtain the coordinates of any point inside the triaxial cell, and thus back-calculate the upper and lower boundaries. With these boundaries and the side surface, a triangular surface mesh was constructed and the specimen volume was then calculated in both unconfined compression tests and triaxial tests. The calculation procedures are presented in detail with validation tests performed on a cylindrical specimen to evaluate the accuracy of the method. Results indicate that the accuracy of the proposed method is up to 0.023% in unconfined compression tests and 0.061% in triaxial tests.


2008 ◽  
Vol 45 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Adriano Virgilio Damiani Bica ◽  
Luiz Antônio Bressani ◽  
Diego Vendramin ◽  
Flávia Burmeister Martins ◽  
Pedro Miguel Vaz Ferreira ◽  
...  

This paper discusses results of laboratory tests carried out with a residual soil originated from the weathering of eolian sandstone from southern Brazil. Parent rock features, like microfabric and particle bonding, are remarkably well preserved within this residual soil. Stiffness and shear strength properties were evaluated with consolidated drained (CID) and consolidated undrained (CIU) triaxial compression tests. Undisturbed specimens were tested with two different orientations between the specimen axis and bedding surfaces (i.e., parallel (δ = 0°) or perpendicular (δ = 90°)) to investigate the effect of anisotropy. When CID triaxial tests were performed with δ = 0°, the yield surface associated with the structure was much larger than when tests were performed with δ = 90°. Coincidently, CIU tests with δ = 0° showed peak shear strengths much greater than for δ = 90° at comparable test conditions. Once the peak shear strength was surpassed, CIU tests followed collapse-type effective stress paths not shown by corresponding tests with remolded specimens. A near coincidence was observed between the yield surface determined with CID tests and the envelope of collapse-type effective stress paths for δ = 0° and δ = 90°.


Géotechnique ◽  
2001 ◽  
Vol 51 (4) ◽  
pp. 373-374 ◽  
Author(s):  
L. D. Wesley ◽  
V. Leelaratnam

1985 ◽  
Vol 22 (2) ◽  
pp. 195-204 ◽  
Author(s):  
E. Karl Sauer ◽  
E. A. Christiansen

Little information is available about typical shear strength parameters of tills in southern Saskatchewan even though till is the most common earth material used for construction in this region. The Warman landslide in the South Saskatchewan River Valley provides some insight into the shear strength characteristics of a till, and the results are compared with laboratory tests. The till is from the Upper till of the Sutherland Group, which has a high clay content relative to the underlying and overlying tills. A back analysis of the landslide produced [Formula: see text]′ = 27° assuming c′ = 0. Comparison with laboratory test data and results from a similar landslide near Lebret, Saskatchewan, suggests that [Formula: see text]′ = 22.5° with c′ = 7 kPa may be appropriate "residual" shear strength parameters. A rising water table appears to have been the main contributing factor to instability between 1969 and 1984. There is a possibility, however, that at the 1:50 return interval for flood levels on the river, erosion at the toe of the landslide debris may be a significant factor. Numerous slump scars in the form of small amphitheatres, presently inactive, can be observed in the aerial photographs of the adjacent area. These failures likely occurred intermittently, depending on fluctuating water table and river flood levels. Key words: landslide, till, correlation, stratigraphy, back analysis, shear strength, residual, aerial photographs.


2004 ◽  
Vol 41 (2) ◽  
pp. 299-312 ◽  
Author(s):  
V Sivakumar ◽  
D McKelvey ◽  
J Graham ◽  
D Hughes

Vibro-stone columns can improve the bearing capacity and reduce the settlement of foundations. Their performance depends on the strength of the column material, reinforcement method of column installation, type of in situ soil, area replacement ratio, and column length. This paper examines the behaviour of small laboratory specimens of soft clay (undrained shear strength ≈ 30 kPa) reinforced with sand columns when tested under known boundary stress conditions. Two series of tests were carried out on kaolin specimens (diameter 100 mm, height 200 mm) in a triaxial cell. In the first series, specimens were reinforced with a 32 mm diameter column of sand, 80, 120, 160, or 200 mm long. Columns were installed by (i) compacting moist sand into a prebored hole or (ii) freezing a column of moist sand before inserting it into a prebored hole. In the second series, columns were reinforced with geo-grids before installation. The specimens were subjected to (i) uniform loading in which the load was applied over the entire surface area of the specimen or (ii) foundation-type loading in which only a small area in the centre of the specimen was loaded. Under uniform loading, the specimens containing a full-depth column were significantly stronger than specimens without columns. Specimens with single, partially penetrating columns installed by wet compaction were weaker than specimens without columns. When frozen columns were installed, strengths increased progressively. Under foundation-type loading, bearing capacities increased with an increase in column length. Geo-grid reinforcement produced significant increases in load-carrying capacity.Key words: ground improvement, undrained shear strength, consolidation, stress path.


Sign in / Sign up

Export Citation Format

Share Document