VISCOSITY OF NATURAL RUBBER SOLUTIONS AT VERY LOW RATES OF SHEAR
The shear dependence of viscosity of benzene solutions of natural rubber was studied at rates of shear from about 500 down to less than 1 sec.−1. Measurements involved following the change of pressure head with time of the various solutions flowing in a capillary, U-tube viscometer. Curvature in the plots of the logarithm of pressure head versus time indicated non-Newtonian flow. From such curves, reduced viscosity data over the above-mentioned shear range were readily derived. As a check, data over the range 100–500 sec.−1 were also obtained with a five-bulb viscometer of the Krigbaum–Flory type, and these data overlapped those obtained with the U tube. The reduced viscosity increased very sharply with decrease in gradient, making extrapolation to the viscosity axis quite unreliable. However, a theoretical relation proposed by Bueche fitted the composite data rather well. This work furnished a nice technique for determining the zero shear reduced viscosity (ηap/c)0 without the necessity of performing an uncertain extrapolation: evaluate the parameters of the Bueche formula which best satisfies the experimental data over a fairly wide range of shear rates, and then calculate (ηap/c)0 directly.