CONSTITUTION OF THE HEMICELLULOSE FROM MESTA FIBER (HIBISCUS CANNABINUS)

1963 ◽  
Vol 41 (9) ◽  
pp. 2346-2350 ◽  
Author(s):  
S. K. Sen

The chlorite holocellulose of mesta fiber (Hibiscus cannabinus) was extracted with alkaline solutions of successively increasing concentration and finally with alkaline borate solution. Hemicellulose fractions (I–IV) were thus obtained. Analytical data are recorded for each fraction.Partial acid hydrolysis of the mesta hemicellulose gave 2-O-(4-O-methyl-α-D-glucopyranosyl uronic acid)-D-xylopyranose. Methanolysis and hydrolysis of the fully methylated hemicellulose (fraction II) gave a mixture of 3-O-methyl-D-xylose, 2,3-di-O-methyl-D-xylose, 2,3,4-tri-O-methyl-D-xylose, and 2-O-(2,3,4-tri-O-methyl-α-D-glucopyranosyl uronic acid)-3-O-methyl-D-xylopyranose in the approximate molar ratio of 1.6:34:1:6.4. The number-average molecular weight of the methylated polysaccharide was 18,400 ± 500 (degree of polymerization, 110 ± 3). The number-average molecular weight of the original hemicellulose (fraction II) was found to be 23,000 ± 500 (degree of polymerization, 164 ± 3). On the basis of this and other evidences it is suggested that the polysaccharide is composed of chains of 144 (1 → 4)-linked β-D-xylopyranose residues having approximately every seventh residue carrying a terminal 4-O-methyl-α-D-glucuronic acid residue linked through position 2. A small degree of branching in the backbone of D-xylose is indicated.

REAKTOR ◽  
2018 ◽  
Vol 17 (4) ◽  
pp. 191
Author(s):  
Ratnawati Ratnawati ◽  
Nita Indriyani

The low molecular weight fraction of κ-carrageenan is useful in biomedical applications. An ultrasound-assisted acid hydrolysis of κ-carrageenan has been studied. κ-carrageenan with an initial number-average molecular weight of 629 kDa was dispersed in distilled water to form a 5 g/l solution. The pH (3 and 6) of the solution was adjusted by adding HCl solution. The depolymerization reaction was carried out in an ultrasonic device at various temperatures (30, 40, 50, and 60°C) and times (8, 16, 24, and 32 min). The experimental results showed that ultrasound positively contributed to acid hydrolysis process. The number-average molecular weight of the treated k-carrageenan was lower or the percentage of reduction was higher at lower pH, longer reaction time, and higher temperature. The lowest number-average molecular weight (14 kDa) or the highest percent of molecular weight reduction reduction (97.7%) was achieved after ultrasonic irradiation at 60°C and pH 3 for 32 min. Keywords: depolymerization; midpoint scission; ultrasonication


1995 ◽  
Vol 68 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Asahiro Ahagon

Abstract It is considered that many “linear” polymers are actually branched; however, it is difficult to show this with ordinary methods for an arbitrarily chosen polymer. Branching can be regarded as premature crosslinking below the gel point. Attention is then paid to the well-established Charlesby-Pinner Equation used for sol-gel analysis in crosslinking studies. It contains the number average degree of polymerization before crosslinking as a parameter. The molecular parameter is considered here to be that of the virtual linear polymer which would be obtained by unlinking any branch points contained in the polymer. Evidence is shown to support this. It is then possible to estimate the total number of linear components on an average molecule of a branched polymer by taking the ratio of the number average molecular weight measured by two methods, i.e., sol-gel analysis and an ordinary method like GPC. Further information about the branching structure can be obtained by additional measurements of effective crosslink density for a series of polymers obtained from similar polymerization processes.


2021 ◽  
Vol 10 (12) ◽  
pp. e493101218433
Author(s):  
Anny Carolinny Tigre Almeida Chaves ◽  
Raphael Ferreira Queiroz ◽  
Sandra Aparecida de Assis

Fungi are source of polysaccharides that can show biological activity. The objective of this research was obtained polysaccharides from Periconia byssoides and evaluate antibacterial and hypoglycemic activity in vitro. The number-average molecular weight and degree of polymerization were determined. The results show that the polysaccharide of P. byssoides has potential as hypoglycemic. Therefore, it would be interesting to conduct in vivo research with this polysaccharide, to know about its hypoglycemic activity.


1995 ◽  
Vol 60 (3) ◽  
pp. 489-497 ◽  
Author(s):  
Hynek Balcar ◽  
Jan Sedláček ◽  
Marta Pacovská ◽  
Vratislav Blechta

Catalytic activity of the tungsten aryloxo complexes WCl5(OAr) and WOCl3(OAr), where Ar = 4-t-C4H9C6H4, 2,6-(t-C4H9)2C6H3, 2,6-Cl2C6H3, 2,4,6-Cl3C6H2, and 2,4,6-Br3C6H2 in polymerization of phenylacetylene (20 °C, monomer to catalyst molar ratio = 1 000) was studied. The activity of WCl5(OAr) as unicomponent catalysts increases with increasing electron withdrawing character of the -OAr ligand. Addition of two equivalents of organotin cocatalysts (Me4Sn, Bu4Sn, Ph4Sn, Bu3SnH) to WCl5(O-C6H2Cl3-2,4 ,6) has only slight positive effect (slightly higher polymer yield and/or molecular weight of poly(phenylacetylene)s was achieved). However, in the case of WOCl3(O-C6H3Cl2-2, 6) catalyst, it enhances the activity considerably by eliminating the induction period. Poly(phenylacetylene)s prepared with the catalysts studied have weight-average molecular weight ranging from 100 000 to 200 000. They are trans-prevailing and have relatively low molar fraction of monomer units comprised in cyclohexadiene sequences (about 6%).


2000 ◽  
Vol 12 (1) ◽  
pp. 213-223 ◽  
Author(s):  
J G Smith ◽  
J W Connell

As an extension of work on pendent phenylethynyl-containing imide oligomers, three new diamines containing pendent phenylethynyl groups were prepared and characterized. These diamines were used to prepare pendent and pendent and terminal phenylethynyl imide oligomers via the amide acid route in N-methyl-2-pyrrolidinone at a calculated number average molecular weight of 5000 g mol−1. The pendent phenylethynyl groups were randomly distributed along the oligomer backbone and provided a means of controlling the distance between reactive sites. The imide oligomers were characterized and thermally cured, and the cured polymers evaluated as thin films and compared with materials of similar composition prepared from 3,5-diamino-4′-phenylethynylbenzophenone. This work was performed as part of a continuing research effort to develop structural resins for potential aeronautical applications.


e-Polymers ◽  
2003 ◽  
Vol 3 (1) ◽  
Author(s):  
Thomas Fey ◽  
Helmut Keul ◽  
Hartwig Höcker

Abstract Alternating poly(ester amide)s 6a - e were prepared by polycondensation of α-carboxyl-ω-hydroxyamides 3a - e which were obtained by aminolysis of glutaric anhydride (1) and α,ω-aminoalcohols, H2N-(CH2)x-OH (x = 2 - 6) 2a - e. The polycondensation was performed in dimethylformamide solution using a carbodiimide as activating agent, or in bulk with Bu2Sn(OMe)2, Ti(OBu)4 and Sn(octoate)2 as a catalyst. For the polycondensation in bulk, the influence of catalyst and of temperature on the number-average molecular weight was studied. 1H NMR analyses of the poly(ester amide)s clearly show the alternating microstructure. The poly(ester amide)s from glutaric anhydride and the homologous series of α,ω-aminoalcohols are semicrystalline materials; their melting points show the odd/even effect observed for other poly(ester amide)s.


1966 ◽  
Vol 44 (11) ◽  
pp. 1275-1282 ◽  
Author(s):  
V. Zitko ◽  
C. T. Bishop

Fractions of sunflower pectic acid containing 89.8%, 94.2%, and 91.4% of D-galacturonic acid were carboxyl reduced as their methyl or ethylene glycol esters by potassium borohydride. Critical assessment of the effects of three different solvents (water, 80% aqueous dimethyl sulfoxide, and 80% aqueous methanol) on the efficiency of reduction showed that the latter solvent was best. The reductions caused a decrease in the degree of polymerization from 270 to 21. Measurement of the rates of hydrolysis of partially reduced pectic acids containing 90%, 41.6%, 19.9%, 11.0%, and 0.65% of D-galacturonic acid showed that the rate of hydrolysis was directly related to the proportion of galacturonosidic linkages present. Methylation and hydrolysis of the carboxyl-reduced pectic acid fractions yielded 2,3,4,6-tetra-O-methyl-D-galactose and 2,3,6-tri-O-methyl-D-galactose in an approximate molar ratio of 1:20. Results of the periodate oxidation of the carboxyl-reduced pectic acid supported the conclusion inferred from the methylation results that the pectic acid was a linear polymer of 1 → 4 linked α-D-galacturonic acid units.


1976 ◽  
Vol 157 (3) ◽  
pp. 745-751 ◽  
Author(s):  
P Smirnoff ◽  
S Khalef ◽  
Y Birk ◽  
S W Applebaum

1. A trypsin and chymotrypsin inhibitor was isolated by extraction of chick-pea meal at pH8.3, followed by (NH4)2SO4 precipitation and successive column chromatography on CM-cellulose and calcium phosphate (hydroxyapatite). 2. The inhibitor was pure by polyacrylamide-gel and cellulose acetate electrophoresis and by isoelectric focusing in polyacrylamide gels. 3. The inhibitor had a molecular weight of approx. 10000 as determined by ultracentrifugation and by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. A molecular weight of 8300 was resolved from its amino acid composition. 4. The inhibitor formed complexes with trypsin and chymotrypsin at molar ratios of 1:1. 5. Limited proteolysis of the inhibitor with trypsin at pH3.75 resulted in hydrolysis of a single-Lys-X-bond and in consequent loss of 85% of the trypsin inhibitory activity and 60% of the chymotrypsin inhibitory activity. Limited proteolysis of the inhibitor with chymotrypsin at pH3.75 resulted in hydrolysis of a single-Tyr-X-bond and in consequent loss of 70% of the trypsin inhibitory activity and in complete loss of the chymotrypsin inhibitory activity. 6. Cleavage of the inhibitor with CNBr followed by pepsin and consequent separation of the products on a Bio Gel P-10 column, yielded two active fragments, A and B. Fragment A inhibited trypsin but not chymotrypsin, and fragment B inhibited chymotrypsin but not trypsin. The specific trypsin inhibitory activity, on a molar ratio, of fragment A was twice that of the native inhibitor, suggesting the unmasking of another trypsin inhibitory site as a result of the cleavage. On the other hand, the specific chymotrypsin inhibitory activity of fragment B was about one-half of that of the native inhibitor, indicating the occurrence of a possible conformational change.


Sign in / Sign up

Export Citation Format

Share Document