The synthesis of norbornanes with functionalized carbon substituents at a bridgehead. 1-(3-Oxonorborn-1-yl)ethanone and 1-(3-oxonorborn-1-yl)-2-propanone

1992 ◽  
Vol 70 (5) ◽  
pp. 1492-1505 ◽  
Author(s):  
Peter Yates ◽  
Magdy Kaldas

Treatment of 2-norobornene-1-carboxylic acid (7) with one equivalent of methyllithium in ether followed by a second molar equivalent after dilution with tetrahydrofuran gave 1-(norborn-2-en-lyl)ethanone (10) and only a trace of the tertiary alcohol 11. Reaction of 7 with formic acid followed by hydrolysis gave a 4:3 mixture of exo-3- and exo-2-hydroxynorbornane-1-carboxylic acid (16 and 17), whereas oxymercuration–demercuration gave only the exo-3-hydroxy isomer 16. Oxidation of 16 and 17 gave 3- and 2-oxonorbornane-1-carboxylic acid (27 and 29), respectively. Oxymercuration–demercuration of 10 gave exclusively 1-(exo-3-hydroxynorborn-1-yl)ethanone (30), which was also prepared by treatment of 16 with methyllithium in analogous fashion to that used for the conversion of 7 to 10. Oxidation of 30 gave 1-(3-oxonorborn-1-yl)ethanone (1). Dehydrobromination of exo-2-bromonorbornane-1-acetic acid and dehydration of 2-hydroxy-norbornane-2-acetic acid derivatives gave 1-(norborn-2-ylidene) acetic acid derivatives to the exclusion of norborn-2-ene-1 -acetic acid derivatives. Treatment of exo-5-acetyloxy-2-norobornanone (52) with ethyl bromoacetate and zinc gave ethyl exo-5-acetyloxy-2-hydroxynorbornane-(exo- and endo-2-acetate (53 and 54). Reaction of 53 with hydrogen bromide gave initially ethyl endo-3-acetyloxy-exo-6-bromonorbornane-1-acetate (59), which was subsequently converted to a mixture of 59 and its exo-3-acetyloxy epimer 61. Catalytic hydrogenation of this mixture gave a mixture of ethyl endo- and exo-3-acetyloxynorbornane-1 -acetate (62 and 63). Basic hydrolysis of this gave a mixture of the corresponding hydroxy acids, 70 and 71; the former was slowly converted to the latter at pH 5. Oxidation of the mixture of 70 and 71 gave 3-oxonorbornane-1-acetic acid (72). Treatment of the mixture with methyllithium as for 16 gave a mixture of 1-(endo- and exo-3-hydroxynorborn-1-yl)-2-propanone (73 and 74), which was oxidized to 1-(3-oxo-norborn-1-yl)-2-propanone (2). Reaction of exo-2-hydroxynorbornane-1-acetic acid lactone (75) with methyllithium in ether gave (1-(exo-2-hydroxynorborn-1-yl)-2-propanone (76), which on oxidation gave the 2-oxo isomer 78 of 2.

1984 ◽  
Vol 62 (9) ◽  
pp. 1840-1844 ◽  
Author(s):  
Karl R. Kopecky ◽  
Alan J. Miller

Treatment of methyl hydrogen decahydro-1,4:5,8-exo,endo-dimethanonaphthalene-4a,8a-dicarboxylate with lead tetraacetate in benzene – acetic acid replaces the carboxyl group by an acetoxy group. Hydrolysis of this product with 25% sulfuric acid at 130 °C forms 8a-hydroxydecahydro-1,4:5,8-exo,endo-dimethanonaphthalene-4a-carboxylic acid 10. The reaction between 10 and benzenesulfonyl chloride in pyridine containing triethylamine at 95 °C produces anti-sesquinorbornene 1 in 34% yield. In the absence of triethylamine 1 is converted to the hydrochloride. The iodohydroperoxide of 1 is converted by silver acetate at 0 °C to the diketone in a luminescent reaction. The 1,2-dioxetane could not be isolated. Decahydro-1,4:5,8-exo,exo-dimethanonaphthalene-4a,8a-dicarboxylic anhydride is converted slowly by methoxide ion in methanol at 150 °C to the monomethyl ester which then undergoes demethylation. The isomeric exo,endo anhydride undergoes reaction readily with methoxide ion at 80 °C.


1975 ◽  
Vol 28 (10) ◽  
pp. 2275 ◽  
Author(s):  
WE Savige

Oxidation of L- or DL-tryptophan by one molar equivalent of peroxyacetic acid in water at 0-5� gives principally a mixture of 3a- hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (A) diastereoisomers, while oxidation by two or three equivalents of oxidant gives mainly N?-formylkynurenine (C11H12N2O4) and a diastereoisomeric product (B), C11H12N2O5, tentatively assigned the structure 2-amino-3-(4-hydroxy-2-oxo-1,4-dihydro-2H-3,1-benzoxazin-4- yl)propionic acid. ��� Oxidation of (A) by peroxyacetic acid also gives formylkynurenine and (B). Rearrangement of (A) to oxindolylalanine occurs in 12N HCl at 20� or 2N HCl at 80�. (A) is also obtained by reduction of dioxindolylalanine with sodium borohydride. Compound (B) readily undergoes decarboxylation to kynurenine in 0.1N acetic acid at 80�, while in neutral or alkaline solution rapid autoxidation can occur even at room temperature.


1986 ◽  
Vol 64 (6) ◽  
pp. 1170-1172 ◽  
Author(s):  
Michael J. McGlinchey ◽  
Hao Nguyen

The attempted basic hydrolysis of the ester sandwich compound (C6H6)Cr(C6F5CO2Et) did not yield the expected carboxylic acid but instead produced (C6H6)Cr(C6F5H) in good yield together with traces of (C6H6)Cr(C6HF4OMe). Attempts to trap a benzyne intermediate were unsuccessful and the mechanism of decarboxylation is discussed in terms of internal chelation at the chromium centre.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (4) ◽  
pp. 237-244 ◽  
Author(s):  
JONI LEHTO ◽  
RAIMO ALÉN

Untreated and hot water-treated birch (Betula pendula) sawdust were cooked by the oxygen-alkali method under the same cooking conditions (temperature = 170°C, liquor-to-wood ratio = 5 L/kg, and 19% sodium hydroxide charge on the ovendry sawdust). The pretreatment of feedstock clearly facilitated delignification. After a cooking time of 90 min, the kappa numbers were 47.6 for the untreated birch and 10.3 for the hot water-treated birch. Additionally, the amounts of hydroxy acids in black liquors based on the pretreated sawdust were higher (19.5-22.5g/L) than those in the untreated sawdust black liquors (14.8-15.5 g/L). In contrast, in the former case, the amounts of acetic acid were lower in the pretreated sawdust (13.3-14.8 g/L vs. 16.9-19.1 g/L) because the partial hydrolysis of the acetyl groups in xylan already took place during the hot water extraction of feedstock. The sulfur-free fractions in the pretreatment hydrolysates (mainly carbohydrates and acetic acid) and in black liquors (mainly lignin and aliphatic carboxylic acids) were considered as attractive novel byproducts of chemical pulping.


2015 ◽  
Vol 12 (1) ◽  
pp. 3910-3918 ◽  
Author(s):  
Dr Remon M Zaki ◽  
Prof Adel M. Kamal El-Dean ◽  
Dr Nermin A Marzouk ◽  
Prof Jehan A Micky ◽  
Mrs Rasha H Ahmed

 Incorporating selenium metal bonded to the pyridine nucleus was achieved by the reaction of selenium metal with 2-chloropyridine carbonitrile 1 in the presence of sodium borohydride as reducing agent. The resulting non isolated selanyl sodium salt was subjected to react with various α-halogenated carbonyl compounds to afford the selenyl pyridine derivatives 3a-f  which compounds 3a-d underwent Thorpe-Ziegler cyclization to give 1-amino-2-substitutedselenolo[2,3-b]pyridine compounds 4a-d, while the other compounds 3e,f failed to be cyclized. Basic hydrolysis of amino selenolo[2,3-b]pyridine carboxylate 4a followed by decarboxylation furnished the corresponding amino selenolopyridine compound 6 which was used as a versatile precursor for synthesis of other heterocyclic compound 7-16. All the newly synthesized compounds were established by elemental and spectral analysis (IR, 1H NMR) in addition to mass spectra for some of them hoping these compounds afforded high biological activity.


Author(s):  
Carla S. Valdivieso Ramirez ◽  
Feral Temelli ◽  
Marleny D.A. Saldaña

Author(s):  
Carla S. Valdivieso Ramirez ◽  
Jose E. Sanchez Gallego ◽  
Michael Gänzle ◽  
Feral Temelli ◽  
Marleny D.A. Saldaña

Sign in / Sign up

Export Citation Format

Share Document