hydrogen bromide
Recently Published Documents


TOTAL DOCUMENTS

998
(FIVE YEARS 24)

H-INDEX

41
(FIVE YEARS 1)

2021 ◽  
Vol 67 (5) ◽  
pp. 498-502
Author(s):  
Tomáš Vrzal ◽  
Michaela Malečková ◽  
Jana Olšovská

A miniaturized and improved method for Apparent Total Nitroso Compounds determination in liquid matrices was developed. The main improvement is based on a miniaturized and modified apparatus for chemical denitrosation of nitroso compounds by hydrogen bromide in a glacial acetic acid mixture. The reaction is carried out in a teflon reaction coil while the reaction product, gaseous nitric oxide, is drifted to a chemiluminescence detector by the flow of argon together with a vacuum obtained by the detector's oil pump. The apparatus significantly increased the efficiency of the Apparent Total N-Nitroso Compounds determination (compared to the previous method), specifically, the dead volume of the apparatus was significantly decreased, and the effect of the reverse reaction was eliminated as well. The apparatus shortens the analysis time (1.4 min/injection), further it provides a lower detection limit (3 μg(N-NO)/l), quantification limit (10 μg(N-NO)/l), and method uncertainty (15%), and is simpler for the operation.


2021 ◽  
Vol 14 (10) ◽  
pp. 6395-6406
Author(s):  
Alexandra Gutmann ◽  
Nicole Bobrowski ◽  
Marcello Liotta ◽  
Thorsten Hoffmann

Abstract. The chemical characterization of volcanic gas emissions gives insights into the interior of volcanoes. Bromine species have been correlated with changes in the activity of a volcano. In order to exploit the volcanic bromine gases, we need to understand what happens to them after they are outgassed into the atmosphere. This study aims to shed light on the conversion of bromospecies after degassing. The method presented here allows for the specific analysis of gaseous hydrogen bromide (HBr) in volcanic environments. HBr is immobilized by reaction with 5,6-epoxy-5,6-dihydro-[1,10]-phenanthroline (EP), which acts as an inner coating inside of diffusion denuder tubes (in situ derivatization). The derivative is analyzed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS). The collection efficiency for HBr (99.5 %), the collection efficiency for HBr alongside HCl (98.1 %), and the relative standard deviation of comparable samples (8 %) have been investigated. The comparison of the new denuder-based method and Raschig tubes as alkaline traps resulted on average in a relative bias between both methods of 10 ± 6 %. The denuder sampling setup was applied in the plume of Masaya (Nicaragua) in 2016. HBr concentrations in the range between 0.44 and 1.97 ppb were measured with limits of detection and quantification below 0.1 and 0.3 ppb respectively. The relative contribution of HBr as a fraction of total bromine decreased from 75 ± 11 % at the Santiago crater (214 m distance to the volcanic emission source) to 36 ± 8 % on the Nindiri rim (740 m distance). A comparison between our data and the previously calculated HBr, based on the CAABA/MECCA box model, showed a slightly higher trend for the HBr fraction on average than expected from the model. Data gained from this new method can further refine model runs in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Piotr Krawiec ◽  
Łukasz Warguła ◽  
Dorota Czarnecka-Komorowska ◽  
Paweł Janik ◽  
Anna Dziechciarz ◽  
...  

AbstractMachines and devices for the production, transport and segregation of products are placed in production and storage rooms. Flat conveyor and drive belts are very often used for their construction. Due to heavy loads and difficult operating conditions, these belts can catch fire and, as a result, become the main source of air contaminants harmful to human health and life. This article examines the emission level of toxic chemical compounds most often produced during the thermal decomposition and combustion of flat drive and conveyor belts. Six types of flat belts, which were made of various polymer materials, i.e., polyamide, rubber, and polyurethane, and were pyrolyzed in a tube furnace at 950 °C, were tested for emission. Using an Fourier transform infrared spectroscopy gas analyser, five gaseous products of combustion were identified, i.e., carbon mono oxide, carbon dioxide, hydrogen cyanide, hydrogen bromide and sulfur dioxide (SO2). Chemical analysis showed that SO2 compounds and hydrogen bromide were present in only two samples. The test results indicate that gas emission concentration limits for all the tested belts were significantly exceeded. A comparative analysis of the concentration limits of V-belts described in the authors' earlier works shows that flat belts demonstrate lower emission levels of harmful compounds than V-belts. In addition, research has shown that compared to traditional rubber-based belts, belts made of modern materials exhibit no emission of hydrogen chloride compounds during thermal decomposition and combustion.


2021 ◽  
Vol 91 (4) ◽  
pp. 636-649
Author(s):  
L. M. Pevzner ◽  
A. I. Ponyaev

Abstract Bromination of (diethoxyphosphorylmethyl)acetylfurans with dioxane dibromide in the mixture of chloroform and acetic acid in presence of traces of hydrogen bromide at room temperature proceeds selectively at the methyl group of ketone does not involving phosphonate group. Obtained bromoacetyl derivatives were used for alkylation of acetoacetic ester and cyclohexan-1,3-dione. Reaction of 1,4-diketone prepared from acetoacetic ester with hydrazine hydrate in ethanol at room temperature leads to formation of furylpyrazines due to aromatization of intermediate azines by means of air oxygen.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 769
Author(s):  
Jolanta Jaśkowska ◽  
Przemysław Zaręba ◽  
Anna Drabczyk ◽  
Agnieszka Kozak ◽  
Izabela D. Madura ◽  
...  

New pharmaceutically acceptable salts of trazodone (trazodone hydrogen bromide and trazodone 1-hydroxy-2-naphthonic acid) for the treatment of central nervous system disorders are synthesized and described. Although trazodone salts are poorly crystalline, single-crystal X-ray diffraction data for trazodone 1-hydroxy-2-naphthonic acid were collected and analyzed as well as compared to the previously described crystal structure of commercially available trazodone hydrochloride. The powder samples of all new salts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of carbon chemical shielding constants. The main goal of our research was to find salts with better physicochemical properties and to make an attempt to associate them with both the anion structure and the most prominent interactions exhibited by the protonated trazodone cation. The dissolution profiles of trazodone from tablets prepared from various salts with lactose monohydrate were investigated. The studies revealed that salts with simple anions show a fast release of the drug while the presence of more complex anion, more strongly interacting with the cation, effects a slow-release profile of the active substance and can be used for the preparation of the tables with a delay or prolonged mode of action.


2021 ◽  
Vol 280 ◽  
pp. 119435
Author(s):  
Dara Khairunnisa Binte Mohamed ◽  
Andrei Veksha ◽  
Teik-Thye Lim ◽  
Grzegorz Lisak

Author(s):  
Jolanta Jaśkowska ◽  
Przemysław Zaręba ◽  
Anna Drabczyk ◽  
Agnieszka Kozak ◽  
Izabela Madura ◽  
...  

New pharmaceutically acceptable salts of trazodone for the treatment of central nervous system disorders are synthesized and described. Each salt (trazodone hydrogen bromide and trazodone 1-hydroxy-2-naphthoate) was obtained by two or three different methods leading to the same crystalline form. Although trazodone salts are poorly crystalline, single-crystal X-ray diffraction data for trazodone 1-hydroxy-2-naphthoate were collected and analyzed as well as compared to the previously described crystal structure of commercially available trazodone hydrochloride. The powder samples of all new salts were characterized by Fourier transform infrared spectroscopy and 13C solid-state nuclear magnetic resonance spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of carbon chemical shielding constants. The main goal of our research was to find salts with better physicochemical properties and to make an attempt to associate them with both the anion structure and the most prominent interactions exhibited by the protonated trazodone cation. The dissolution profiles of trazodone from tablets prepared from various salts with lactose monohydrate were investigated. The studies revealed that salts with simple anions show a fast release of the drug while the presence of more complex anion, more strongly interacting with the cation, effects a slow-release profile of the active substance and can be used for the preparation of the tables with a delay or prolonged mode of action.


2020 ◽  
Author(s):  
Alexandra Gutmann ◽  
Nicole Bobrowski ◽  
Marcello Liotta ◽  
Thorsten Hoffmann

Abstract. The chemical characterization of volcanic gas emissions gives insights into the interior of volcanoes. Monitoring of BrO/SO2-ratios has recently been correlated with changes in the activity of a volcano. BrO and SO2 can both be measured autonomously and simultaneously with the same instruments from a safe distance, making their ratio potentially a strong monitoring tool. However, BrO is not a primary emitted volcanic volatile and there exist still uncertainties about the formation of BrO in volcanic plumes, mostly due to the lack of analytical approaches for the accurate speciation of certain key compounds. This study describes a new method for the determination of the BrO precursor, the gaseous hydrogen bromide (HBr), by quantitative collection in denuder samplers. Gas diffusion denuders use the difference in diffusion coefficients to separate gaseous from particle-phase compounds. Gaseous HBr molecules are immobilized with an organic coating at the inner walls of the denuder tubes when pumped through the denuders. Five different coatings using 1,2-epoxycyclooctane, trans-oxirane-2,3-dicarboxylic acid, 2,3-epoxy-3-phenylpropanoic acid, 9,10-epoxystearic acid, 5,6-epoxy-5,6-dihydro-[1,10]-phenanthroline (EP) were tested as denuder coatings. EP proved to be a suitable coating reagent, which at the same time, transfers the analyte into an appropriate derivate to be analyzed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (in situ derivatization). Coating amount, breakthrough, matrix effects and the storage behavior have been characterized. No considerable cross-sensitivity with hydrogen chloride or other bromine species such as molecular bromine was observed. The comparison of HBr determination using EP-coated denuders and Raschig Tubes as alkaline traps in the laboratory showed a deviation of 2 ± 11 % for gaseous HBr between the two methods. This allows considering HBr determined by denuders as a fraction of total bromine determined by Raschig Tubes. Since other bromine species (e.g. elemental bromine, bromine oxides) are also collected and determined as bromide by Raschig Tubes, but exclusively HBr in EP-coated denuders, the method presented here allows more accurate speciation of gaseous bromine compounds and their application in volcanic plumes. The denuder sampling setup was applied with complementary denuder systems and alkaline traps in the plume of Masaya (Nicaragua) in 2016. HBr concentrations in the range between 0.44 and 2.27 ppb were measured with limits of detection and quantification below 0.1 and 0.3 ppb respectively at typical ground-based sampling conditions. The relative contribution of HBr as a fraction of total bromine decreased from 75 ± 11 % at Santiago rim (214 m distance to the volcanic emission source) to 36 ± 8 % on Nindiri rim (740 m distance). Our findings are in good agreement with previous estimations of the HBr conversion from the chemistry box model (CAABA/MECCA).


Sign in / Sign up

Export Citation Format

Share Document