Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences

2005 ◽  
Vol 35 (7) ◽  
pp. 1617-1625 ◽  
Author(s):  
A Claus ◽  
E George

Fine-root (<2 mm) biomass and biomass distribution were determined in different age-classes of three European forest chronosequences dominated by Fagus sylvatica L., Picea abies (L.) Karst., and Quercus cerris L., respectively. Root samples were taken with the auger method. There was a clear effect of stand age on standing fine-root biomass, with the highest fine-root biomass in adult but not mature stands. The vertical fine-root biomass distribution showed, at all sites, high densities of roots in the top soil layers and with depth a gradual decrease of fine-root biomass density. The difference in total fine-root biomass between the different age-classes appeared to be due to differences in the top soil layers. Fine-root biomass in the lower soil layers was less variable along the life cycle of the forests. Only in very young stands, specific root length of fine roots was higher than in the other age-classes. The present data together with other published values suggest that fine-root biomass in tree stands develops in three phases: rapid increase after a clear-cut harvest up to a maximum of fine-root biomass; a decrease during maturation of the stand; and a steady-state in mature stands.

2018 ◽  
Vol 38 (11) ◽  
Author(s):  
吕渡 LÜ Du ◽  
杨亚辉 YANG Yahui ◽  
赵文慧 ZHAO Wenhui ◽  
雷斯越 LEI Siyue ◽  
张晓萍 ZHANG Xiaoping

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1236
Author(s):  
Dipendra Singha ◽  
Francis Q. Brearley ◽  
Shri Kant Tripathi

Nitrogen (N) dynamics during changes in land use patterns in tropical forests may profoundly affect fine root dynamics and nutrient cycling processes. Variations in fine root biomass and soil N dynamics were assessed in developing stands of increasing ages following shifting agriculture in Mizoram, Northeast India, and comparisons were made with a natural forest stand. Concentrations of soil available N (NH4-N and NO3-N) and the proportion of NH4-N in total available N increased with stand age. The N-mineralization rate also increased with stand age whilst the proportion of nitrification relative to ammonification declined during succession. Fine root biomass and N-mineralization increased, and available N decreased during the monsoon season while this pattern was reversed during the winter season. A greater proportion of fine roots were <0.5 mm diameter in the younger sites, and turnover of fine roots was more rapid in the developing stands compared to the natural forest. Fine root biomass was correlated positively with N-mineralization rate and soil water content. Thus, it can be concluded that the fine root growth was aided by rapid N-mineralization, and both fine root growth and N-mineralization increase as stands redevelop following shifting cultivation disturbance.


2016 ◽  
Vol 58 (4) ◽  
pp. 220-227 ◽  
Author(s):  
Dorota Grygoruk

Abstract Fine root biomass of forest trees is a recognised indicator of environmental changes in the conditions of global climate change. The present study was carried out in six old-growth beech forests (112-140 years) located in different climatic conditions on the range border of Fagus sylvatica L. in Poland. The root biomass was investigated by soil coring method in the upper soil layers (0-5 cm, 5-15 cm and total layer 0-15 cm). The significantly greater total root biomass was found in the beech stands, which characterised by higher average precipitation and lower average annual temperatures in the period 2000-2005. The share of roots of diameter > 5 mm increased with increasing depth of top soils. Biomass of fine roots (diameter ≤ 2 mm) decreased with increasing depth of upper soil layers. The average biomass of fine roots ranged from 175.36 to 418.16 g m-2 in the soil layer 0-15 cm. The significant differences of fine root biomass were found between studied stands in the soil layers 0-5 cm and 0-15 cm. Also, it was found significant positive correlation between fine root biomass in the soil layer 0-15 cm and precipitation during the growing season in 2006. Precipitation in the study period was connected with very high rainfall in August 2006, repeatedly exceeding the long-term monthly levels. Regional climatic conditions, in that extreme weather events in growing seasons can significantly to affect changes of fine root biomass of forest trees, consequently, changes of relationships between the growth of above- and below-ground of the old-growth forest stands.


1987 ◽  
Vol 75 (3) ◽  
pp. 857 ◽  
Author(s):  
Kristiina A. Vogt ◽  
Daniel J. Vogt ◽  
Erin E. Moore ◽  
Babatunde A. Fatuga ◽  
Mark R. Redlin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document