Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada

2008 ◽  
Vol 38 (4) ◽  
pp. 878-889 ◽  
Author(s):  
Bradley S. Case ◽  
Ronald J. Hall

Aboveground tree biomass and volume are required inputs to models that estimate carbon budgets and ecosystem productivity. Generalized equations are often used to estimate biomass and volume when local equations are unavailable. This study determined whether there was a concomitant increase in prediction error from increasing levels of equation generalization. Local site, generalized regional, and generalized national allometric equations were compared for 10 species distributed across 119 sites in a region defined by west-central Canada. This study employed regression fit statistics and two prediction error metrics, the average prediction error (APE) from the prediction error sum of squares (PRESS) statistic and mean prediction bias. The APE was 9, 12, and 25 kg of biomass per tree for local site, generalized regional, and national equations, respectively. The mean prediction bias for biomass and volume were statistically similar between local level and generalized regional equations across all species. Predictions from generalized national equations were statistically similar for 5 of 10 species when compared with those from local site and generalized regional equations. While local site equations were most accurate for a given site, results indicate that generalized regional equations will produce reasonable estimates of biomass and volume at sites in this region of Canada.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruifang Ma ◽  
Xinqi Zheng ◽  
Peipei Wang ◽  
Haiyan Liu ◽  
Chunxiao Zhang

AbstractCorona Virus Disease 2019 (COVID-19) has spread rapidly to countries all around the world from the end of 2019, which caused a great impact on global health and has had a huge impact on many countries. Since there is still no effective treatment, it is essential to making effective predictions for relevant departments to make responses and arrangements in advance. Under the limited data, the prediction error of LSTM model will increase over time, and its prone to big bias for medium- and long-term prediction. To overcome this problem, our study proposed a LSTM-Markov model, which uses Markov model to reduce the prediction error of LSTM model. Based on confirmed case data in the US, Britain, Brazil and Russia, we calculated the training errors of LSTM and constructed the probability transfer matrix of the Markov model by the errors. And finally, the prediction results were obtained by combining the output data of LSTM model with the prediction errors of Markov Model. The results show that: compared with the prediction results of the classical LSTM model, the average prediction error of LSTM-Markov is reduced by more than 75%, and the RMSE is reduced by more than 60%, the mean $${R}^{2}$$ R 2 of LSTM-Markov is over 0.96. All those indicators demonstrate that the prediction accuracy of proposed LSTM-Markov model is higher than that of the LSTM model to reach more accurate prediction of COVID-19.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yibing Zhang ◽  
Tingyang Li ◽  
Aparna Reddy ◽  
Nambi Nallasamy

Abstract Objectives To evaluate gender differences in optical biometry measurements and lens power calculations. Methods Eight thousand four hundred thirty-one eyes of five thousand five hundred nineteen patients who underwent cataract surgery at University of Michigan’s Kellogg Eye Center were included in this retrospective study. Data including age, gender, optical biometry, postoperative refraction, implanted intraocular lens (IOL) power, and IOL formula refraction predictions were gathered and/or calculated utilizing the Sight Outcomes Research Collaborative (SOURCE) database and analyzed. Results There was a statistical difference between every optical biometry measure between genders. Despite lens constant optimization, mean signed prediction errors (SPEs) of modern IOL formulas differed significantly between genders, with predictions skewed more hyperopic for males and myopic for females for all 5 of the modern IOL formulas tested. Optimization of lens constants by gender significantly decreased prediction error for 2 of the 5 modern IOL formulas tested. Conclusions Gender was found to be an independent predictor of refraction prediction error for all 5 formulas studied. Optimization of lens constants by gender can decrease refraction prediction error for certain modern IOL formulas.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangyu Fan ◽  
Fenglin Xu ◽  
Lin Chen ◽  
Qiao Chen ◽  
Zhiwei Liu ◽  
...  

The compressive strength of shale is a comprehensive index for evaluating the shale strength, which is linked to shale well borehole stability. Based on correlation analysis between factors (confining stress, height/diameter ratio, bedding angle, and porosity) and shale compressive strength (Longmaxi Shale in Sichuan Basin, China), we develop a dimension analysis-based model for prediction of shale compressive strength. A nonlinear-regression model is used for comparison. A multitraining method is used to achieve reliability of model prediction. The results show that, compared to a multi-nonlinear-regression model (average prediction error = 19.5%), the average prediction error of the dimension analysis-based model is 19.2%. More importantly, our dimension analysis-based model needs to determine only one parameter, whereas the multi-nonlinear-regression model needs to determine five. In addition, sensitivity analysis shows that height/diameter ratio has greater sensitivity to compressive strength than other factors.


2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


2018 ◽  
Vol 8 (12) ◽  
pp. 228 ◽  
Author(s):  
Akiko Mizuno ◽  
Maria Ly ◽  
Howard Aizenstein

Subjective Cognitive Decline (SCD) is possibly one of the earliest detectable signs of dementia, but we do not know which mental processes lead to elevated concern. In this narrative review, we will summarize the previous literature on the biomarkers and functional neuroanatomy of SCD. In order to extend upon the prevailing theory of SCD, compensatory hyperactivation, we will introduce a new model: the breakdown of homeostasis in the prediction error minimization system. A cognitive prediction error is a discrepancy between an implicit cognitive prediction and the corresponding outcome. Experiencing frequent prediction errors may be a primary source of elevated subjective concern. Our homeostasis breakdown model provides an explanation for the progression from both normal cognition to SCD and from SCD to advanced dementia stages.


1998 ◽  
Vol 120 (3) ◽  
pp. 489-495 ◽  
Author(s):  
S. J. Hu ◽  
Y. G. Liu

Autocorrelation in 100 percent measurement data results in false alarms when the traditional control charts, such as X and R charts, are applied in process monitoring. A popular approach proposed in the literature is based on prediction error analysis (PEA), i.e., using time series models to remove the autocorrelation, and then applying the control charts to the residuals, or prediction errors. This paper uses a step function type mean shift as an example to investigate the effect of prediction error analysis on the speed of mean shift detection. The use of PEA results in two changes in the 100 percent measurement data: (1) change in the variance, and (2) change in the magnitude of the mean shift. Both changes affect the speed of mean shift detection. These effects are model parameter dependent and are obtained quantitatively for AR(1) and ARMA(2,1) models. Simulations and examples from automobile body assembly processes are used to demonstrate these effects. It is shown that depending on the parameters of the AMRA models, the speed of detection could be increased or decreased significantly.


Author(s):  
Michiel Van Elk ◽  
Harold Bekkering

We characterize theories of conceptual representation as embodied, disembodied, or hybrid according to their stance on a number of different dimensions: the nature of concepts, the relation between language and concepts, the function of concepts, the acquisition of concepts, the representation of concepts, and the role of context. We propose to extend an embodied view of concepts, by taking into account the importance of multimodal associations and predictive processing. We argue that concepts are dynamically acquired and updated, based on recurrent processing of prediction error signals in a hierarchically structured network. Concepts are thus used as prior models to generate multimodal expectations, thereby reducing surprise and enabling greater precision in the perception of exemplars. This view places embodied theories of concepts in a novel predictive processing framework, by highlighting the importance of concepts for prediction, learning and shaping categories on the basis of prediction errors.


Author(s):  
Nicolò Gatta ◽  
Mauro Venturini ◽  
Lucrezia Manservigi ◽  
Giuseppe Fabio Ceschini ◽  
Giovanni Bechini

This paper addresses the challenge of forecasting the future values of gas turbine measureable quantities. The final aim is the simulation of “virtual sensors” capable of producing statistically coherent measurements aimed at replacing anomalous observations discarded from the time series. Among the different available approaches, the Bayesian forecasting method (BFM) adopted in this paper uses the information held by a pool of observations as knowledge base to forecast the values at a future state. The BFM algorithm is applied in this paper to Siemens field data to assess its prediction capability, by considering two different approaches, i.e., single-step prediction (SSP) and multistep prediction (MSP). While SSP predicts the next observation by using true data as base of knowledge, MSP uses previously predicted data as base of knowledge to perform the prediction of future time steps. The results show that BFM single-step average prediction error can be very low, when filtered field data are analyzed. On the contrary, the average prediction error achieved in case of BFM multistep prediction is remarkably higher. To overcome this issue, the BFM single-step prediction scheme is also applied to clusters of time-wise averaged data. In this manner, an acceptable average prediction error can be achieved by considering clusters composed of 60 observations.


2020 ◽  
Author(s):  
Dongjae Kim ◽  
Jaeseung Jeong ◽  
Sang Wan Lee

AbstractThe goal of learning is to maximize future rewards by minimizing prediction errors. Evidence have shown that the brain achieves this by combining model-based and model-free learning. However, the prediction error minimization is challenged by a bias-variance tradeoff, which imposes constraints on each strategy’s performance. We provide new theoretical insight into how this tradeoff can be resolved through the adaptive control of model-based and model-free learning. The theory predicts the baseline correction for prediction error reduces the lower bound of the bias–variance error by factoring out irreducible noise. Using a Markov decision task with context changes, we showed behavioral evidence of adaptive control. Model-based behavioral analyses show that the prediction error baseline signals context changes to improve adaptability. Critically, the neural results support this view, demonstrating multiplexed representations of prediction error baseline within the ventrolateral and ventromedial prefrontal cortex, key brain regions known to guide model-based and model-free learning.One sentence summaryA theoretical, behavioral, computational, and neural account of how the brain resolves the bias-variance tradeoff during reinforcement learning is described.


Sign in / Sign up

Export Citation Format

Share Document