Genetic control of wood properties in Picea glauca — an analysis of trends with cambial age

2010 ◽  
Vol 40 (4) ◽  
pp. 703-715 ◽  
Author(s):  
Patrick Lenz ◽  
Alain Cloutier ◽  
John MacKay ◽  
Jean Beaulieu

We investigated the genetic control of wood properties as a function of cambial age to enable improvement of juvenile wood attributes in white spruce ( Picea glauca (Moench) Voss). Increment cores were taken from 375 trees randomly selected from 25 open-pollinated families in a provenance–progeny trial repeated on three sites. High-resolution pith-to-bark profiles were obtained for microfibril angle (MFA), modulus of elasticity (MOE), wood density, tracheid diameter and cell wall thickness, fibre coarseness, and specific fibre surface with the SilviScan technology. Heritability estimates indicated that genetic control of cell anatomy traits and wood density increased with cambial age, whereas the genetic control of MFA and MOE remained relatively low across growth rings. Wood density, radial cell diameter, cell wall thickness, and specific fibre surface were highly heritable, indicating that significant genetic gains could be expected in tree improvement programs, although cambial age at selection may strongly influence the magnitude of realized gains. In contrast, growth-related properties, such as ring width, core length, and tree height, gave weak or nonsignificant heritability estimates. Adverse correlations between mechanical strength and properties related to paper quality suggest that breeding strategies must incorporate both types of traits to improve white spruce wood quality for different end uses.

2005 ◽  
Vol 35 (5) ◽  
pp. 1156-1172 ◽  
Author(s):  
Roderick D Ball ◽  
Mike S McConchie ◽  
Dave J Cown

Wood anatomical characteristics of twenty-nine 6-year-old Pinus radiata D. Don trees, selected to represent the extremes of intraring checking, were assessed with SilviScan. Derived ring-level summary variables were calculated from the SilviScan pith-to-bark wood property traces, based on ring means, standard deviations, and quantiles. Incidence of checking was assessed on discs that had been oven dried using a standardized method, and evidence for associations between wood characteristics and checking was evaluated at the tree and ring level using Bayesian statistical methods. Bayes factors of 39.1, 14.9, and 7.8 were obtained at the tree level, representing moderate to good evidence for associations between ring medians of wood density, tracheid radial diameter, and cell wall thickness, respectively. Increasing wood density, decreasing tracheid radial diameter, and increasing cell wall thickness were associated with reduced incidence of checking. These are parameters expected a priori to contribute to tracheid cells' resistance to collapse under drying stresses. A generalized linear model with radial diameter and cell wall thickness as independent variables had a concordance of 83% for predicting the checking status of trees.


2003 ◽  
Vol 33 (10) ◽  
pp. 1905-1914 ◽  
Author(s):  
Irina P Panyushkina ◽  
Malcolm K Hughes ◽  
Eugene A Vaganov ◽  
Martin AR Munro

We reconstructed air temperature for two periods in the growth season from cell dimension and cell number variability in cross-dated tree rings of Larix cajanderi Mayr. from northeastern Siberia. Thirteen tree-ring chronologies based on cell size, cell wall thickness, and cell number were developed for AD 1642–1993. No clear evidence was found of an age-related trend in cell dimensions in the sampled materials, but cell numbers were correlated with cambial age. The chronologies contain strong temperature signals associated with the timing of xylem growth. We obtained reliable reconstructions of mean June temperature from the total cell number and July–September temperature from the cell wall thickness of latewood. June temperature and July–September temperature covaried for most of the period from AD 1642 to AD 1978. After that time, June temperature became cooler relative to July–September temperature. This difference caused disproportional changes in earlywood tracheids because of the late start of growth and cool conditions in June followed by warming during the rest of the season. The identification of this unusual recent change has shown that intraseasonal resolution may be achieved by cell dimension and cell number chronologies.


2002 ◽  
Vol 32 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Harri Mäkinen ◽  
Pekka Saranpää ◽  
Sune Linder

The effect of fertilization on wood density, fibre length, fibre diameter, lumen diameter, proportion of cell wall area, and cell wall thickness of Norway spruce (Picea abies (L.) Karst.) were studied in a nutrient optimization experiment in northern Sweden. On the fertilized plots, all essential macronutrients and micronutrients were supplied in irrigation water every second day during the growing season. After 12 years' treatment, data were collected from 24 trees (40 years old) on the fertilized and control plots. Fertilization increased radial growth more than threefold, especially earlywood width, and decreased wood density by over 20% at 1.3 and 4 m height. The decrease in wood density was closely related to the proportion of latewood. The absolute wood density also decreased across the whole annual ring but proportionately more in latewood than in earlywood. A close relationship was found between the wood density and fibre properties, especially with the proportion of cell wall in a cross section of each annual ring, as well as with fibre and lumen width. The absolute cell wall thickness was clearly less related to wood density. However, rather large variations were found between individual trees in the relationship between wood density and fibre properties.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 415
Author(s):  
Josefin A. Nilsson ◽  
Grace Jones ◽  
Charlotta Håkansson ◽  
Åsa Blom ◽  
Johan Bergh

This study investigates wood density and anatomy of juvenile silver birch stems in Sweden, grown in mixed conifer stands. Our aim is to investigate if fertilization provides increased growth, as well as an eventual reduction in stem wood density. Measurements of basic density, ring width, cell wall thickness, and vessels are analyzed for 20 birch trees. Bark to pith radial sections are analyzed using a light microscope and the freeware ImageJ to compare treatments and ages. The results show that trees with fertilizer treatment have wider growth rings and thinner cell wall thickness compared to unfertilized trees. The fertilized trees also have a lower cambium age at the same height and the same diameter, and a slightly lower stem mean density (420 kg m−3) than the unfertilized stems (460 kg m−3). Fertilizer is a significant determinant of density and cell wall thickness in nonlinear models. The fertilized trees have increased growth and reached a fixed diameter earlier. The age difference between the trees likely explains some of the differences in cell wall thickness. This study supports the use of fertilizer as a silvicultural option for increasing the growth rate of silver birch for a relatively small reduction of wood density.


Holzforschung ◽  
2013 ◽  
Vol 67 (2) ◽  
pp. 217-225 ◽  
Author(s):  
Jinmei Xu ◽  
Jianxiong Lu ◽  
Fucheng Bao ◽  
Robert Evans ◽  
Geoffrey M. Downes

Abstract Dimensions of dated tree rings are an important tool of dendroclimatology. However, the relationships between climatic variables and cell diameter and cell wall thickness are not yet clearly elaborated. In the present article, year-to-year cell characteristics, ring width, and wood density of Picea crassifolia trees growing in northwestern China have been measured with high resolution by means of the instrument SilviScan-3. The response function analysis showed that climate explained 51% of the variation of cell radial diameter chronology, 48% of wood density, 40% of cell wall thickness, and 37% of ring width. Cell wall thickness and wood density responded significantly and positively to temperature, and the response to precipitation was negative, while the opposite was true for cell radial diameter and ring width. Cell wall thickness and wood density were pronounced (statistically significant) to temperature in September and precipitation in May and August. Cell radial diameter responded significantly to temperature in June and July, and precipitation, in August. For ring width, the temperature in July was important. Accordingly, cell characteristics are sensitive to climate, and the findings could be useful in the field of dendroclimatology.


2019 ◽  
Vol 28 (2) ◽  
pp. e011 ◽  
Author(s):  
Majid Kiaei ◽  
Valiullah Moosavi ◽  
Seyed Eshagh Ebadi

Aim of the study: This study aimed to investigate the effect of altitude difference on the wood dry density, fiber dimensions, and morphological properties of hornbeam wood (Carpinus betulus L.).Area of study: The study area was located in the province of Mazandaran, north of Iran.Material and method: 18 mature trees were randomly selected and harvested at six altitude levels (300, 500, 700, 900, 1100, and 1300 m) in the north of Iran. The clear test samples‎ were prepared‎ at diameter at breast height (DBH) to measure the wood dry density, fiber length, fiber diameter, cell wall thickness, Runkel coefficients, flexibility coefficients, and slenderness coefficients. Further ‎analyses included the relationships between the wood properties and site conditions (temperature, ‎precipitation, crown canopy, ‎and understory herb layer) as well as tree’s main dimensions ‎(tree height and the DBH).Main results: The results indicated significant effects of altitude variations on the studied ‎properties. The pattern variations of wood properties were very regular at different levels of height. The average fiber length and fiber diameter decreased while the wood dry density and cell wall thickness increased with increasing the altitude levels. The average values of wood dry density, fiber length, fiber diameter, cell wall thickness, slenderness coefficients, flexibility coefficients, and Runkel coefficients of hornbeam wood were 698 kg/m3, 1.42mm, 25.58 µm, 5.72µm, 55.55, 54.04%, and 0.93, respectively, in the above six altitudes. Pearson matrix correlation showed that there were significant relationships between temperature, crown canopy, tree height and DBH ‎with the studied wood properties (except the slenderness coefficients)‎.Research highlights: The hornbeams grown at altitudes above 900-1300 m were not suitable for pulp and ‎paper production‎ due to relatively higher Runkel coefficients, the lower flexibility coefficients, as well as smaller fiber length than other altitude levels.Additional Keywords: Carpinus betulus; altitude variation; density; fiber dimensions; morphological properties.Abbreviations used: WDD (wood dry density); FL (fiber length); FD (fiber diameter), CWT (cell wall thickness); FC (flexibility coefficient); RC (Runkel coefficients); SC (slenderness coefficient).


2014 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Mohd Helmy Ibrahim ◽  
Mohd Nazip Suratman ◽  
Razali Abd Kader

Trees planted from agroforestry practices can become valuable resources in meeting the wood requirements of many nations. Gliricidia sepium is an exotic species introduced to the agricultural sector in Malaysia mainly for providing shade for cocoa and coffee plantations. This study investigates its wood physical properties (specific gravity and moisture content) and fibre morphology (length, lumen diameter and cell wall thickness) of G. sepium at three intervals according to age groups ( three, five and seven years of ages). Specific gravity (0.72) was significantly higher at seven years ofage as compared to five (0.41) and three (0.35) years age group with a mean of 0.43 (p<0.05). Mean moisture content was 58.3% with no significant difference existing between the tree age groups. Fibre diameter (22.4 mm) was significantly lower (p<0.05) for the trees which were three years of age when compared to five and seven years age groups (26.6 mm and 24. 7 mm), respectively. Means of fibre length, lumen diameter and cell wall thickness were 0.83 mm, 18.3 mm, and 6.2 mm, respectively, with no significant differences detected between trees in all age groups. Further calculation on the coefficient of suppleness and runkel ratio suggest that wood from G.sepium may have the potential for insulation board manufacturing and paper making. However, future studies should experiment the utilisation of this species for these products to determine its full potential.


2021 ◽  
pp. 026248932110068
Author(s):  
Youming Chen ◽  
Raj Das ◽  
Hui Wang ◽  
Mark Battley

In this study, the microstructure of a SAN foam was imaged using a micro-CT scanner. Through image processing and analysis, variations in density, cell wall thickness and cell size in the foam were quantitatively explored. It is found that cells in the foam are not elongated in the thickness (or rise) direction of foam sheets, but rather equiaxed. Cell walls in the foam are significantly straight. Density, cell size and cell wall thickness all vary along the thickness direction of foam sheets. The low density in the vicinity of one face of foam sheets leads to low compressive stiffness and strength, resulting in the strain localization observed in our previous compressive tests. For M80, large open cells on the top face of foam sheets are likely to buckle in compressive tests, therefore being another potential contributor to the strain localization as well. The average cell wall thickness measured from 2D slice images is around 1.4 times that measured from 3D images, and the average cell size measured from 2D slice images is about 13.8% smaller than that measured from 3D images. The dispersions of cell wall thickness measured from 2D slice images are 1.16–1.20 times those measured from 3D images. The dispersions of cell size measured from 2D slice images are 1.12–1.36 times those measured from 3D images.


2001 ◽  
Vol 31 (11) ◽  
pp. 2049-2057 ◽  
Author(s):  
Tongli Wang ◽  
Sally N Aitken

Variation in xylem anatomy among selected populations of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) was examined using digital image analysis based on an annual growth ring (age 10) per tree. Four subpopulations were selected using the following criteria for height growth and wood density: (i) fast growth and high density; (ii) slow growth and high density; (iii) fast growth and low density; and (iv) slow growth and low density. Significant differences were found among subpopulations for several anatomical parameters including tracheid density, lumen size, and cell wall thickness that may affect the economic value and utilization of wood. Principal component analysis indicate that the first four principal components (PCs) were associated with (i) ring area (PC1), (ii) earlywood density (PC2), (iii) latewood density (PC3), and (iv) lumen shape in earlywood (PC4), suggesting that these aspects of wood properties and growth are controlled by different sets of genes. Relative contributions of total number of tracheids, tracheid lumen size, and cell wall thickness to ring area and correlations between cell wall area proportion and X-ray density are discussed.


Sign in / Sign up

Export Citation Format

Share Document