fiber length
Recently Published Documents


TOTAL DOCUMENTS

1203
(FIVE YEARS 340)

H-INDEX

49
(FIVE YEARS 7)

Author(s):  
Hossein Noorvand ◽  
Michael Mamlouk ◽  
Kamil Kaloush

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Halimatuddahliana Nasution ◽  
Esam Bashir Yahya ◽  
H. P. S. Abdul Khalil ◽  
Marwan Abdulhakim Shaah ◽  
A. B. Suriani ◽  
...  

Cellulose nanofibers (CNFs) are the most advanced bio-nanomaterial utilized in various applications due to their unique physical and structural properties, renewability, biodegradability, and biocompatibility. It has been isolated from diverse sources including plants as well as textile wastes using different isolation techniques, such as acid hydrolysis, high-intensity ultrasonication, and steam explosion process. Here, we planned to extract and isolate CNFs from carpet wastes using a supercritical carbon dioxide (Sc.CO2) treatment approach. The mechanism of defibrillation and defragmentation caused by Sc.CO2 treatment was also explained. The morphological analysis of bleached fibers showed that Sc.CO2 treatment induced several longitudinal fractions along with each fiber due to the supercritical condition of temperature and pressure. Such conditions removed th fiber’s impurities and produced more fragile fibers compared to untreated samples. The particle size analysis and Transmission Electron Microscopes (TEM) confirm the effect of Sc.CO2 treatment. The average fiber length and diameter of Sc.CO2 treated CNFs were 53.72 and 7.14 nm, respectively. In comparison, untreated samples had longer fiber length and diameter (302.87 and 97.93 nm). The Sc.CO2-treated CNFs also had significantly higher thermal stability by more than 27% and zeta potential value of −38.9± 5.1 mV, compared to untreated CNFs (−33.1 ± 3.0 mV). The vibrational band frequency and chemical composition analysis data confirm the presence of cellulose function groups without any contamination with lignin and hemicellulose. The Sc.CO2 treatment method is a green approach for enhancing the isolation yield of CNFs from carpet wastes and produce better quality nanocellulose for advanced applications.


Author(s):  
K. G. Tay ◽  
Noran Azizan Cholan ◽  
Nurul Anati Othman

Fiber optical parametric amplifier (FOPA) is operated based on energy transfer from pump waves to signal wave and at the end of the fiber, an idler wave is generated. This process is called four-wave mixing (FWM). Even though effects of higher-order dispersion coefficients, fiber length, fiber nonlinearity, fiber attenuation, pump powers, pump wavelength separation and distance of central pump wavelength with ZDW on gain profiles have been examined by previous researchers, but on different fiber or numerically studied using the Optisys system, analytical model or different amplitude equations. Thus, in this study, the above-mentioned parameters on the gain performance of dual pump fiber optical parametric amplifier (FOPA) using highly nonlinear shifted fiber (HNL-DSF) as a medium will be numerically investigated using ode45 function in Matlab. The gain at a certain wavelength can be obtained by solving 4 coupled amplitude equations with fiber loss and pump depletion that govern the four-wave mixing (FWM) process of pumps, signal and idler waves. Simulations results indicate positive gives poor or no gain, meanwhile, an addition of to negative widens the bandwidth, but there is no significant effect with the addition of . Besides, an increase of fiber length, nonlinearity and pump powers improve gain performance, but an increase of fiber loss decays the gain amplitude. Increment of pump separation will enhance flatness of gain at wavelength far from central wavelength but results in an increase of gain reduction at the central wavelength. Lastly, must be positive, not too small and not bigger than 1.125nm to get a high, broader and lesser ripples gain.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lina Xu ◽  
Daohan Song ◽  
Ning Liu ◽  
Wei Tian

Concrete materials are an important part of global structure, and their fire resistance directly affects the safety of buildings and tunnels. In this study, basalt fiber was used to reinforce concrete with high content of stone powder in order to enhance its high-temperature performance. The mechanical properties and ultrasonic characteristics at different temperatures were studied using the cube compressive strength test and nonlinear ultrasonic test. The results indicated that the addition of basalt fiber in specimens improved their compressive strength; however, this strength did not continuously increase with increases in the fiber length and fiber content, and the optimal values for fiber length and fiber content were determined to be 12 mm and 1 kg/m3 at 600°C, respectively. With increases in temperature, the unconfined compressive strength increased first and then decreased. When the temperature was 400°C, the unconfined compressive strength of the specimens reached their highest values and then decreased. When the temperature was 400°C and 600°C, the strength of the stone powder concrete with fiber was higher than that without fiber, which shows that fiber can improve the mechanical properties of concrete at high temperatures. Based on the Box-Behnken design (BBD) method, the unconfined compressive strength response regression model of basalt fiber-reinforced concrete with high content of stone powder, which follows parameters including fiber content, fiber length, and temperature at high-temperature environments, was established, and it was found that the interaction of fiber content, fiber length, and the temperature was significant based on multifactor interaction analysis. The analysis of ultrasonic signals based on the S transform showed that, with increases in temperature, the amplitudes of the acoustic response signals, the corresponding frequency spectrum, and the time-frequency spectrum were clearly reduced. At the same temperature, the amplitudes of the acoustic response signals of different concrete testing blocks did not change much and remained at the same level.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quanwei Lu ◽  
Xianghui Xiao ◽  
Juwu Gong ◽  
Pengtao Li ◽  
Yan Zhao ◽  
...  

Fiber length is an important determinant of fiber quality, and it is a quantitative multi-genic trait. Identifying genes associated with fiber length is of great importance for efforts to improve fiber quality in the context of cotton breeding. Integrating transcriptomic information and details regarding candidate gene regions can aid in candidate gene identification. In the present study, the CCRI45 line and a chromosome segment substitution line (CSSL) with a significantly higher fiber length (MBI7747) were utilized to establish F2 and F2:3 populations. Using a high-density genetic map published previously, six quantitative trait loci (QTLs) associated with fiber length and two QTLs associated with fiber strength were identified on four chromosomes. Within these QTLs, qFL-A07-1, qFL-A12-2, qFL-A12-5, and qFL-D02-1 were identified in two or three environments and confirmed by a meta-analysis. By integrating transcriptomic data from the two parental lines and through qPCR analyses, four genes associated with these QTLs including Cellulose synthase-like protein D3 (CSLD3, GH_A12G2259 for qFL-A12-2), expansin-A1 (EXPA1, GH_A12G1972 for qFL-A12-5), plasmodesmata callose-binding protein 3 (PDCB3, GH_A12G2014 for qFL-A12-5), and Polygalacturonase (At1g48100, GH_D02G0616 for qFL-D02-1) were identified as promising candidate genes associated with fiber length. Overall, these results offer a robust foundation for further studies regarding the molecular basis for fiber length and for efforts to improve cotton fiber quality.


2021 ◽  
Vol 13 (24) ◽  
pp. 13753
Author(s):  
Niamat Ullah Khan ◽  
Aftab Ahmad Khan ◽  
Muhammad Arif Goheer ◽  
Izwa Shafique ◽  
Sadam Hussain ◽  
...  

Long-term conservation tillage and straw incorporation are reported to improve the soil health, growth, and yield traits of crops; however, little is known regarding the optimal nitrogen (N) supply under conservation tillage with straw incorporation. The present study evaluated the effects of conservation tillage practices (ZTsas: zero tillage plus wheat straw on the soil surface as such, and MTsi: minimum tillage plus wheat straw incorporated) and different N application rates (50, 100, 150, and 200 kg ha−1) on the yield and quality traits of cotton and soil characteristics in a five-year field experiment. The results showed that ZTsas produced a higher number of bolls per plant, boll weight, seed cotton yield, 100-seed weight, ginning out-turn (GOT), fiber length, and strength than MTsi. Among different N application rates, the maximum number of bolls per plant, boll weight, seed cotton yield, GOT, 100-seed weight, fiber length, strength, and micronaire were recorded at 150 kg N ha−1. Averaged over the years, tillage × N revealed that ZTsas had a higher boll number plant−1, boll weight, 100-seed weight, GOT, fiber length, and strength with N application at 150 kg ha−1, as compared to other tillage systems. Based on the statistical results, there is no significant difference in total soil N and soil organic matter among different N rates. Further, compared to MTsi, ZTsas recorded higher soil organic matter (SOM, 8%), total soil N (TSN, 29%), water-stable aggregates (WSA, 8%), and mean weight diameter (MWD, 28.5%), particularly when the N application of 150 kg ha−1. The fiber fineness showed that ZTsas had no adverse impact on fiber fineness compared with MTsi. These results indicate that ZTsas with 150 kg N ha−1 may be the optimum and most sustainable approach to improve cotton yield and soil quality in the wheat–cotton system.


2021 ◽  
Vol 19 (11) ◽  
pp. 47-65
Author(s):  
Suha Mousa Khorsheed Alawsi ◽  
Noor Mohammed Hassan ◽  
Intehaa Abdullah Mohammed Al-Juboury

The increasing demand for information transmission makes the problem of establishing a laser system is operating in C-band (1530-1565nm) wavelength region is a significant task, which attracts a lot of researchers' attention lately. In this paper, the ability to produce signals of multi wavelengths using a single light source was adopted to employ the Raman scattering effect for establishing Raman shift configuration-based multi-wavelength fiber lasers, which is not currently addressed in available schemes. This is what prompted to simulate the performance of C-band multi-wavelength produced by Raman fiber laser that utilizing fiber Bragg grating (FBG) to amplify pumped power and also utilizing the single-mode fiber (SMF) as the nonlinear gain medium. The proposed laser system is designed by OptiSystem software. The resulted maximum output power was 22.07dB at Wavelength Division Multiplexing (WDM) of 23.01dB input power. The achieved multi-wavelength that generated by Bragg grating and SMF was containing six Stokes and anti-Stokes, they are: 1548.51nm, 1549, 31nm, 1550.116nm, 1550.91nm, 1551.72nm, and 1552.52nm, in which the resulted computed efficiency of the system was raised up to 80.23% at input power 20 dB and dispersion fiber length of 0.2 km.


2021 ◽  
Author(s):  
James Ramsay ◽  
Lilia Noble ◽  
Glynn Lockyer ◽  
Mohand Alyan ◽  
Ahmed Al Shmakhy

Abstract This paper outlines how the problem of previously unmanageable data volumes produced by distributed fiber optic well monitoring systems is solved through the use of the latest sensing and analytics platform. The platform significantly reduces fiber optic data volumes enabling data to be streamed, processed, stored and visualized; all in real-time. The platform was effectively utilized for real-time data processing and visualization of well injection profiles of fields in the Middle East. The platform addresses the big data challenge associated with streaming distributed fiber optic data in three key areas: Edge processing reduces Distributed Fiber Optic (DFO) data rates by orders of magnitude so it can be streamed from the edge to the end user in real-time.Tiled data storage utilizes innovative data storage strategy to enable fast query responses whether visualizing years or just seconds of DFO data.Elastic infrastructure of processing and storage enables the platform to seamlessly scale and handle variable data rates. Raw Distributed Acoustic Sensing (DAS) data can be generated at rates of 100 MBs per second and cannot feasibly be transferred over a standard internet connection. The sensing and analytics platform's algorithms extract features at the edge which reduce data rates by three orders of magnitude whilst still preserving all key information from the data. Processed DFO data is aggregated and tiled in real-time at tens of different resolutions with respect to both time and fiber length. This enables sub-second query response times even when requesting DFO data across years of historical data. All platform processing logic is designed to run asynchronously on serverless infrastructure. This enables the platform's infrastructure to rapidly scale up or down in response to variable data rates. The result is a cloud-based visualization dashboard capable of displaying DFO data in near real-time across any time range and fiber length. Use of this sensing and analytics platform allowed for seamless streaming of fiber optic data on the Middle East field for injection monitoring, allowing the operator to visualize injection profiles and optimize the injection program in real-time. This sensing and analytics fiber management platform enables the user to highly successfully stream and visualize DFO data in real-time. It enables visibility into the subsurface for production and injection wells, enabling field-wide efficiencies and optimization.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ding Cong ◽  
Guo Liping ◽  
Ren Jinming ◽  
Wang Yongming ◽  
Li Xinyu ◽  
...  

The fiber length has a significant impact on the fiber bridging capacity and the mechanical properties of high ductility cementitious composites (HDCCs), which is related to fiber/matrix interfacial bonding. However, this fundamental knowledge of HDCCs design has rarely been investigated systematically. To this end, this study deeply investigates the effect of the fiber length on the bridging stress and the complementary energy with various fiber/matrix interfacial bonds in theory. Then, the mechanical performances of HDCCs with various fiber lengths and compressive strengths were evaluated experimentally. In micromechanical design, longer fibers can achieve stronger bridging stress and more sufficient complementary energy regardless of the fiber/matrix interfacial bonding properties. However, it should be noted that the increase in bridging capacity was quite slow for the overlong fibers and excessive interfacial bonding. The experiments indicated that overlong fibers (18 mm and 24 mm) easily twined on the mixer blade and were hard to disperse evenly. The HDCCs with shorter fibers displayed better workability. The compressive strength was less affected by the fiber length, and most striking differences were less than 5.0%, while the flexural properties and the tensile properties first increased and then decreased when the fiber length ranged from 6 mm to 24 mm. Consequently, the fibers with lengths of 9 mm and the fibers with lengths of 12 mm were better candidates for the HDCCs with compressive strengths of 30 MPa to 80 MPa, and fibers with lengths of 9 mm caused the HDCCs to exhibit higher ductility properties in general.


Sign in / Sign up

Export Citation Format

Share Document