Regulation of human trophoblast migration and invasiveness

2002 ◽  
Vol 80 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Chandan Chakraborty ◽  
Louise M Gleeson ◽  
Timothy McKinnon ◽  
Peeyush K Lala

The human placenta is an invasive structure in which highly proliferative, migratory, and invasive extravillous trophoblast (EVT) cells migrate and invade the uterus and its vasculature. Using in vitro propagated normal first-trimester EVT cells and immortalized EVT cells, which share all of the phenotypic and functional characteristics of the normal EVT cells, it has been shown that migration/invasion of human EVT cells is stringently regulated by many growth factors, their binding proteins, extracellular matrix (ECM) components, and some adhesion molecules in an autocrine/paracrine manner at the fetal–maternal interface in human pregnancy. Transforming growth factor β (TGF-β), decorin (a proteoglycan in the ECM), and melanoma cell adhesion molecule (Mel-CAM) inhibit, and insulin-like growth factor II (IGF-II), IGF-binding protein 1 (IGFBP-1), and endothelin 1 (ET-1) stimulate EVT cell migration/invasion. Inhibition of EVT cell migration by TGF-β has been suggested to be due to upregulation of integrins, which make the cells more adhesive to the ECM. Its antiinvasive action is due to an upregulation of tissue inhibitor of matrix metalloprotease 1 (TIMP-1) and plasminogen activator inhibitor (PAI-1) and a downregulation of urokinase-type plasminogen activator (uPA). Molecular mechanisms of inhibition of migration/invasion of EVT cells by decorin and Mel-CAM remain to be identified. IGF-II action has been shown to be mediated by IGF type I receptors (IGF-RII) independently of IGF type I receptors (IGF-RI) and IGFBPs. This action of IGF-II appears to involve inhibitory G proteins and phosphorylation of mitogen-activated protein kinase (MAPK) (extracellular signal-regulated protein kinases 1 and 2 (ERK-1 and ERK-2)). IGFBP-1 stimulation of EVT cell migration appears to occur by binding its Arg-Gly-Asp (RGD) domain to α5β1 integrin, leading to phosphorylation of focal adhesion kinase (FAK) and MAPK (ERK-1 and ERK-2). These studies may improve our understanding of diseases related to abnormal placentation, viz. hypoinvasiveness in preeclampsia and hyperinvasiveness in trophoblastic neoplasms.Key words: trophoblast, migration, integrin, IGF-RII, IGFBP-1.

2009 ◽  
Vol 20 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Wei Zuo ◽  
Ye-Guang Chen

Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.


Author(s):  
Beom Seok Park ◽  
Jaewang Lee ◽  
Jin Hyun Jun

Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.


2014 ◽  
Vol 34 (6) ◽  
Author(s):  
Na-Na Li ◽  
Yu-Yin Xu ◽  
Xiao-Lan Chen ◽  
Ya-Ping Fan ◽  
Jian-Hua Wu

The prostaglandin E2 receptor, EP2 (E-prostanoid 2), plays an important role in mice glomerular MCs (mesangial cells) damage induced by TGFβ1 (transforming growth factor-β1); however, the molecular mechanisms for this remain unknown. The present study examined the role of the EP2 signalling pathway in TGFβ1-induced MCs proliferation, ECM (extracellular matrix) accumulation and expression of PGES (prostaglandin E2 synthase). We generated primary mice MCs. Results showed MCs proliferation promoted by TGFβ1 were increased; however, the production of cAMP and PGE2 (prostaglandin E2) was decreased. EP2 deficiency in these MCs augmented FN (fibronectin), Col I (collagen type I), COX2 (cyclooxygenase-2), mPGES-1 (membrane-associated prostaglandin E1), CTGF (connective tissue growth factor) and CyclinD1 expression stimulated by TGFβ1. Silencing of EP2 also strengthened TGFβ1-induced p38MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2) and CREB1 (cAMP responsive element-binding protein 1) phosphorylation. In contrast, Adenovirus-mediated EP2 overexpression reversed the effects of EP2-siRNA (small interfering RNA). Collectively, the investigation indicates that EP2 may block p38MAPK, ERK1/2 and CREB1 phosphorylation via activation of cAMP production and stimulation of PGE2 through EP2 receptors which prevent TGFβ1-induced MCs damage. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the damage induced by TGFβ1.


2014 ◽  
Vol 306 (6) ◽  
pp. H789-H796 ◽  
Author(s):  
Tieqiang Zhao ◽  
Wenyuan Zhao ◽  
Weixin Meng ◽  
Chang Liu ◽  
Yuanjian Chen ◽  
...  

Vascular endothelial growth factor (VEGF)-C is a key mediator of lymphangiogenesis. Our recent study shows that VEGF-C/VEGF receptors (VEGFR)-3 are significantly increased in the infarcted rat myocardium, where VEGFR-3 is expressed not only in lymph ducts but also in myofibroblasts, indicating that VEGF-C has an unrevealed role in fibrogenesis during cardiac repair. The current study is to explore the regulation and molecular mechanisms of VEGF-C in fibrogenesis. The potential regulation of VEGF-C on myofibroblast differentiation/growth/migration, collagen degradation/synthesis, and transforming growth factor (TGF)-β and ERK pathways was detected in cultured cardiac myofibroblasts. Our results showed that VEGF-C significantly increased myofibroblast proliferation, migration, and type I/III collagen production. Matrix metalloproteinase (MMP)-2 and -9 were significantly elevated in the medium of VEGF-C-treated cells, coincident with increased tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. Furthermore, VEGF-C activated the TGF-β1 pathway and ERK phosphorylation, which was significantly suppressed by TGF-β or ERK blockade. This is the first study indicating that in addition to lymphangiogenesis, VEGF-C is also involved in fibrogenesis through stimulation of myofibroblast proliferation, migration, and collagen synthesis, via activation of the TGF-β1 and ERK pathways.


2003 ◽  
Vol 14 (1) ◽  
pp. 54-66 ◽  
Author(s):  
Rubén A. Bartolomé ◽  
Francisco Sanz-Rodrı́guez ◽  
Mar M. Robledo ◽  
Andrés Hidalgo ◽  
Joaquin Teixidó

The α4 integrins (α4β1 and α4β7) are cell surface heterodimers expressed mostly on leukocytes that mediate cell-cell and cell-extracellular matrix adhesion. A characteristic feature of α4 integrins is that their adhesive activity can be subjected to rapid modulation during the process of cell migration. Herein, we show that transforming growth factor-β1 (TGF-β1) rapidly (0.5–5 min) and transiently up-regulated α4 integrin-dependent adhesion of different human leukocyte cell lines and human peripheral blood lymphocytes (PBLs) to their ligands vascular cell adhesion molecule-1 (VCAM-1) and connecting segment-1/fibronectin. In addition, TGF-β1 enhanced the α4 integrin-mediated adhesion of PBLs to tumor necrosis factor-α–treated human umbilical vein endothelial cells, indicating the stimulation of α4β1/VCAM-1 interaction. Although TGF-β1 rapidly activated the small GTPase RhoA and the p38 mitogen-activated protein kinase, enhanced adhesion did not require activation of both signaling molecules. Instead, polymerization of actin cytoskeleton triggered by TGF-β1 was necessary for α4 integrin-dependent up-regulated adhesion, and elevation of intracellular cAMP opposed this up-regulation. Moreover, TGF-β1 further increased cell adhesion mediated by α4 integrins in response to the chemokine stromal cell-derived factor-1α. These data suggest that TGF-β1 can potentially contribute to cell migration by dynamically regulating cell adhesion mediated by α4 integrins.


2012 ◽  
Vol 287 (15) ◽  
pp. 12520-12528 ◽  
Author(s):  
Xiaoling Song ◽  
Frederic W. Thalacker ◽  
Marit Nilsen-Hamilton

The major physiological inhibitor of plasminogen activator, type I plasminogen activator inhibitor (PAI-1), controls blood clotting and tissue remodeling events that involve cell migration. Transforming growth factor type β (TGFβ) and epidermal growth factor (EGF) interact synergistically to increase PAI-1 mRNA and protein levels in human HepG2 and mink Mv1Lu cells. Other growth factors that activate tyrosine kinase receptors can substitute for EGF. EGF and TGFβ regulate PAI-1 by synergistically activating transcription, which is further amplified by a decrease in the rate of mRNA degradation, the latter being regulated only by EGF. The combined effect of transcriptional activation and mRNA stabilization results in a rapid 2-order of magnitude increase in the level of PAI-1. TGFβ also increases the sensitivity of the cells to EGF, thereby recruiting the cooperation of EGF at lower than normally effective concentrations. The contribution of EGF to the regulation of PAI-1 involves the MAPK pathway, and the synergistic interface with the TGFβ pathway is downstream of MEK1/2 and involves phosphorylation of neither ERK1/2 nor Smad2/3. Synergism requires the presence of both Smad and AP-1 recognition sites in the promoter. This work demonstrates the existence of a multidimensional cellular mechanism by which EGF and TGFβ are able to promote large and rapid changes in PAI-1 expression.


2013 ◽  
Vol 126 (4) ◽  
pp. 275-288 ◽  
Author(s):  
Hangxiang Zhang ◽  
Jing Wu ◽  
Hailong Dong ◽  
Shaukat A. Khan ◽  
Mon-Li Chu ◽  
...  

AngII (angiotensin II) is a potent neurohormone responsible for cardiac hypertrophy, in which TGF (transforming growth factor)-β serves as a principal downstream mediator. We recently found that ablation of fibulin-2 in mice attenuated TGF-β signalling, protected mice against progressive ventricular dysfunction, and significantly reduced the mortality after experimental MI (myocardial infarction). In the present study, we investigated the role of fibulin-2 in AngII-induced TGF-β signalling and subsequent cardiac hypertrophy. We performed chronic subcutaneous infusion of AngII in fibulin-2 null (Fbln2−/−), heterozygous (Fbln2+/−) and WT (wild-type) mice by a mini-osmotic pump. After 4 weeks of subpressor dosage of AngII infusion (0.2 μg/kg of body weight per min), WT mice developed significant hypertrophy, whereas the Fbln2−/− showed no response. In WT, AngII treatment significantly up-regulated mRNAs for fibulin-2, ANP (atrial natriuretic peptide), TGF-β1, Col I (collagen type I), Col III (collagen type III), MMP (matrix metalloproteinase)-2 and MMP-9, and increased the phosphorylation of TGF-β-downstream signalling markers, Smad2, TAK1 (TGF-β-activated kinase 1) and p38 MAPK (mitogen-activated protein kinase), which were all unchanged in AngII-treated Fbln2−/− mice. The Fbln2+/− mice consistently displayed AngII-induced effects intermediate between WT and Fbln2−/−. Pressor dosage of AngII (2 mg/kg of body weight per min) induced significant fibrosis in WT but not in Fbln2−/− mice with comparable hypertension and hypertrophy in both groups. Isolated CFs (cardiac fibroblasts) were treated with AngII, in which direct AngII effects and TGF-β-mediated autocrine effects was observed in WT. The latter effects were totally abolished in Fbln2−/− cells, suggesting that fibulin-2 is essential for AngII-induced TGF-β activation. In conclusion our data indicate that fibulin-2 is essential for AngII-induced TGF-β-mediated cardiac hypertrophy via enhanced TGF-β activation and suggest that fibulin-2 is a potential therapeutic target to inhibit AngII-induced cardiac remodelling.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Erik Hedrick ◽  
Stephen Safe

ABSTRACT Transforming growth factor β (TGF-β)-induced migration of triple-negative breast cancer (TNBC) cells is dependent on nuclear export of the orphan receptor NR4A1, which plays a role in proteasome-dependent degradation of SMAD7. In this study, we show that TGF-β induces p38α (mitogen-activated protein kinase 14 [MAPK14]), which in turn phosphorylates NR4A1, resulting in nuclear export of the receptor. TGF-β/p38α and NR4A1 also play essential roles in the induction of epithelial-to-mesenchymal transition (EMT) and induction of β-catenin in TNBC cells, and these TGF-β-induced responses and nuclear export of NR4A1 are blocked by NR4A1 antagonists, the p38 inhibitor SB202190, and kinase-dead [p38(KD)] and dominant-negative [p38(DN)] forms of p38α. Inhibition of NR4A1 nuclear export results in nuclear export of TGF-β-induced β-catenin, which then undergoes proteasome-dependent degradation. TGF-β-induced β-catenin also regulates NR4A1 expression through formation of the β-catenin–TCF-3/TCF-4/LEF-1 complex on the NR4A1 promoter. Thus, TGF-β-induced nuclear export of NR4A1 in TNBC cells plays an essential role in cell migration, SMAD7 degradation, EMT, and induction of β-catenin, and all of these pathways are inhibited by bis-indole-derived NR4A1 antagonists that inhibit nuclear export of the receptor and thereby block TGF-β-induced migration and EMT.


2015 ◽  
Vol 129 (12) ◽  
pp. 1173-1193 ◽  
Author(s):  
Simona Gallo ◽  
Valentina Sala ◽  
Stefano Gatti ◽  
Tiziana Crepaldi

Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.


Sign in / Sign up

Export Citation Format

Share Document