cardiac hypertrophy
Recently Published Documents


TOTAL DOCUMENTS

6043
(FIVE YEARS 951)

H-INDEX

151
(FIVE YEARS 14)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0257929
Author(s):  
Maria Francesca Evaristi ◽  
Bruno Poirier ◽  
Xavier Chénedé ◽  
Anne-Marie Lefebvre ◽  
Alain Roccon ◽  
...  

Aim Heart failure with preserved ejection fraction (HFpEF) is a major cause of death worldwide with no approved treatment. Left ventricular hypertrophy (LVH) and diastolic dysfunction represent the structural and functional components of HFpEF, respectively. Endothelial dysfunction is prevalent in HFpEF and predicts cardiovascular events. We investigated if SAR247799, a G-protein-biased sphingosine-1-phosphate receptor 1 (S1P1) agonist with endothelial-protective properties, could improve cardiac and renal functions in a rat model of metabolic syndrome LVH and diastolic function. Methods 31- and 65-week-old obese ZSF1 (Ob-ZSF1) rats, representing adult and aged animals with LVH and diastolic dysfunction, were randomized to a chow diet containing 0.025% (w/w) of SAR247799, or control (CTRL) chow for 4 weeks. Age-matched lean ZSF1 (Le-ZSF1) rats were fed control chow. Echocardiography, telemetry, biochemical and histological analysis were performed to evaluate the effect of SAR247799. Results Echocardiography revealed that Ob-ZSF1 rats, in contrast to Le-ZSF1 rats, developed progressive diastolic dysfunction and cardiac hypertrophy with age. SAR247799 blunted the progression of diastolic dysfunction in adult and aged animals: in adult animals E/e’ was evaluated at 21.8 ± 1.4 for Ob-ZSF1-CTRL, 19.5 ± 1.2 for Ob-ZSF1-SAR247799 p<0.01, and 19.5 ± 2.3 for Le-ZSF1-CTRL (median ± IQR). In aged animals E/e’ was evaluated at 23.15 ± 4.45 for Ob-ZSF1-CTRL, 19.5 ± 5 for Ob-ZSF1-SAR247799 p<0.01, and 16.69 ± 1.7 for Le-ZSF1-CTRL, p<0.01 (median ± IQR). In aged animals, SAR247799 reduced cardiac hypertrophy (g/mm mean ± SEM of heart weight/tibia length 0.053 ± 0.001 for Ob-ZSF1-CTRL vs 0.046 ± 0.002 for Ob-ZSF1-SAR247799 p<0.01, Le-ZSF1-CTRL 0.035 ± 0.001) and myocardial perivascular collagen content (p<0.001), independently of any changes in microvascular density. In adult animals, SAR247799 improved endothelial function as assessed by the very low frequency bands of systolic blood pressure variability (mean ± SEM 67.8 ± 3.41 for Ob-ZSF1-CTRL 55.8 ± 4.27 or Ob-ZSF1-SAR247799, p<0.05 and 57.3 ± 1.82 Le-ZSF1-CTRL), independently of any modification of arterial blood pressure. In aged animals, SAR247799 reduced urinary protein/creatinine ratio, an index of glomerular injury, (10.3 ± 0.621 vs 8.17 ± 0.231 for Ob-ZSF1-CTRL vs Ob-ZSF1-SAR247799, respectively, p<0.05 and 0.294 ± 0.029 for Le-ZSF1-CTRL, mean ± SEM) and the fractional excretion of electrolytes. Circulating lymphocytes were not decreased by SAR247799, confirming lack of S1P1 desensitization. Conclusions These experimental findings suggest that S1P1 activation with SAR247799 may be considered as a new therapeutic approach for LVH and diastolic dysfunction, major components of HFpEF.


Author(s):  
Cícera Edna Barbosa David ◽  
Aline Maria Brito Lucas ◽  
Pedro Lourenzo Oliveira Cunha ◽  
Yuana Ivia Ponte Viana ◽  
Marcos Yukio Yoshinaga ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Juha H. Vähätalo ◽  
Lauri T. A. Holmström ◽  
Katri Pylkäs ◽  
Sini Skarp ◽  
Katja Porvari ◽  
...  

Objective: Cardiac hypertrophy with varying degrees of myocardial fibrosis is commonly associated with coronary artery disease (CAD) related sudden cardiac death (SCD), especially in young victims among whom patterns of coronary artery lesions do not entirely appear to explain the cause of SCD. Our aim was to study the genetic background of hypertrophy, with or without fibrosis, among ischemic SCD victims with single vessel CAD.Methods: The study population was derived from the Fingesture study, consisting of all autopsy-verified SCDs in Northern Finland between the years 1998 and 2017 (n = 5,869). We carried out targeted next-generation sequencing using a panel of 174 genes associated with myocardial structure and ion channel function in 95 ischemic-SCD victims (mean age 63.6 ± 10.3 years; 88.4% males) with single-vessel CAD in the absence of previously diagnosed CAD and cardiac hypertrophy with or without myocardial fibrosis at autopsy.Results: A total of 42 rare variants were detected in 43 subjects (45.3% of the study subjects). Five variants in eight subjects (8.4%) were classified as pathogenic or likely pathogenic. We observed 37 variants of uncertain significance in 39 subjects (40.6%). Variants were detected in myocardial structure protein coding genes, associated with arrhythmogenic right ventricular, dilated, hypertrophic and left ventricular non-compaction cardiomyopathies. Also, variants were detected in ryanodine receptor 2 (RYR2), a gene associated with both cardiomyopathies and catecholaminergic polymorphic ventricular tachycardias.Conclusions: Rare variants associated with cardiomyopathies, in the absence of anatomic evidence of the specific inherited cardiomyopathies, were common findings among CAD-related SCD victims with single vessel disease and myocardial hypertrophy found at autopsies, suggesting that these variants may modulate the risk for fatal arrhythmias and SCD in ischemic disease.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Synne S. Hansen ◽  
Tina M. Pedersen ◽  
Julie Marin ◽  
Neoma T. Boardman ◽  
Ajay M. Shah ◽  
...  

The present study aimed to examine the effects of low doses of angiotensin II (AngII) on cardiac function, myocardial substrate utilization, energetics, and mitochondrial function in C57Bl/6J mice and in a transgenic mouse model with cardiomyocyte specific upregulation of NOX2 (csNOX2 TG). Mice were treated with saline (sham), 50 or 400 ng/kg/min of AngII (AngII50 and AngII400) for two weeks. In vivo blood pressure and cardiac function were measured using plethysmography and echocardiography, respectively. Ex vivo cardiac function, mechanical efficiency, and myocardial substrate utilization were assessed in isolated perfused working hearts, and mitochondrial function was measured in left ventricular homogenates. AngII50 caused reduced mechanical efficiency despite having no effect on cardiac hypertrophy, function, or substrate utilization. AngII400 slightly increased systemic blood pressure and induced cardiac hypertrophy with no effect on cardiac function, efficiency, or substrate utilization. In csNOX2 TG mice, AngII400 induced cardiac hypertrophy and in vivo cardiac dysfunction. This was associated with a switch towards increased myocardial glucose oxidation and impaired mitochondrial oxygen consumption rates. Low doses of AngII may transiently impair cardiac efficiency, preceding the development of hypertrophy induced at higher doses. NOX2 overexpression exacerbates the AngII -induced pathology, with cardiac dysfunction and myocardial metabolic remodelling.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasuhisa Nakao ◽  
Jun Aono ◽  
Mika Hamaguchi ◽  
Kayo Takahashi ◽  
Tomohisa Sakaue ◽  
...  

AbstractSuture-based transverse aortic constriction (TAC) in mice is one of the most frequently used experimental models for cardiac pressure overload-induced heart failure. However, the incidence of heart failure in the conventional TAC depends on the operator’s skill. To optimize and simplify this method, we proposed O-ring-induced transverse aortic constriction (OTAC) in mice. C57BL/6J mice were subjected to OTAC, in which an o-ring was applied to the transverse aorta (between the brachiocephalic artery and the left common carotid artery) and tied with a triple knot. We used different inner diameters of o-rings were 0.50 and 0.45 mm. Pressure overload by OTAC promoted left ventricular (LV) hypertrophy. OTAC also increased lung weight, indicating severe pulmonary congestion. Echocardiographic findings revealed that both OTAC groups developed LV hypertrophy within one week after the procedure and gradually reduced LV fractional shortening. In addition, significant elevations in gene expression related to heart failure, LV hypertrophy, and LV fibrosis were observed in the LV of OTAC mice. We demonstrated the OTAC method, which is a simple and effective cardiac pressure overload method in mice. This method will efficiently help us understand heart failure (HF) mechanisms with reduced LV ejection fraction (HFrEF) and cardiac hypertrophy.


Author(s):  
Xiujuan Shi ◽  
Yongjia Hu ◽  
Yuxiong Jiang ◽  
Jiawen Wu ◽  
Chen Zhang ◽  
...  

2022 ◽  
Vol 132 (1) ◽  
Author(s):  
Hui-Hua Li ◽  
Monte S. Willis ◽  
Pamela Lockyer ◽  
Nathaniel Miller ◽  
Holly McDonough ◽  
...  
Keyword(s):  

2022 ◽  
Vol 18 (2) ◽  
pp. 783-799
Author(s):  
Luping Wang ◽  
Panxia Wang ◽  
Suowen Xu ◽  
Zhuoming Li ◽  
Dayue Darrel Duan ◽  
...  

Author(s):  
Laura Martínez-Arias ◽  
Sara Panizo-García ◽  
Julia Martín-Vírgala ◽  
Beatriz Martín-Carro ◽  
Sara Fernández-Villabrille ◽  
...  

2022 ◽  
Vol 226 (1) ◽  
pp. S141-S142
Author(s):  
Rolanda Lister ◽  
Meredith Huszagh ◽  
Shilin Zhao ◽  
yibing Yan ◽  
Scott Baldwin

Sign in / Sign up

Export Citation Format

Share Document