Transfer of newly made triglyceride from hepatocytes to preexisting extracellular very low density lipoproteins

1987 ◽  
Vol 65 (3) ◽  
pp. 337-343
Author(s):  
Gen Yoshino ◽  
George Steiner

Previous in vivo studies suggested a new model to describe the metabolism of very low density lipoproteins (VLDL). It was hypothesized that some of the lipoprotein triglyceride was transferred directly from hepatocytes and intestinal mucosal cells into preexisting extracellular VLDL particles. These studies employ an in vitro system to test this hypothesis. Isolated rat liver cells containing newly made radioactive triglyceride were prepared. These cells were incubated in medium to which exogenous VLDL had or had not been added. The presence of extracellular VLDL (rat or human) stimulated the transfer of labeled triglyceride out of the liver cells. This triglyceride was recovered in the medium's VLDL (as determined by its density and its precipitability by MnCl2–heparin or by anti-apoprotein B). Although these studies focussed on VLDL, preliminary data showed that similar triglyceride transfer occurred in the presence of the other apoprotein B containing lipoprotein, low density lipoprotein (LDL). However, in the presence of equivalent amounts of LDL, this triglyceride transfer was less than that seen in the presence of exogenous VLDL. Furthermore, the increased triglyceride released in the presence of LDL occurred entirely in the d < 1.006 fraction of the medium. That released in the presence of VLDL was recovered in the d > 1.006 fraction. Hence, we conclude that the transfer of the newly made triglyceride was from the cell to the extracellular lipoprotein that had been added to the medium. The transfer of triglyceride to VLDL did not depend on the synthesis and release of new VLDL particles because it was not accompanied by a change in the production of [14C]leucine VLDL protein, it was not blocked by chloroquine, and the LDL induced triglyceride release occurred into the d > 1.006 fraction. This transfer did not depend on the previously described triglyceride-transfer factor. The present in vitro studies support the model suggested by our earlier in vivo studies. The VLDL particle does not appear to be metabolized as a complete intact unit. Rather, some of its major lipid component, triglyceride, can move directly into and out of already existing extracellular lipoproteins.

Author(s):  
Dorine W. Swinkels ◽  
Pierre N.M. Demacker ◽  
Heidi L.M. Hak-Lemmers ◽  
Marc J.T.M. Mol ◽  
Sing H. Yap ◽  
...  

2010 ◽  
Vol 43 (4) ◽  
pp. 439-444 ◽  
Author(s):  
Giovani M Favero ◽  
Raul C Maranhão ◽  
Durvanei A Maria ◽  
Débora Levy ◽  
Sérgio P Bydlowski

1981 ◽  
Vol 198 (2) ◽  
pp. 373-377 ◽  
Author(s):  
A D Kalopissis ◽  
S Griglio ◽  
M I Malewiak ◽  
R Rozen ◽  
X L Liepvre

The very-low-density-lipoprotein secretion rate of isolated hepatocytes obtained from rats fed a high-fat diet was half that of cells from control animals. In fat-fed rats, the initial cellular uptake of [l-14C]oleate in vitro was decreased by 25%, its esterification to triacylglycerols and phospholipids by 50% and its incorporation into very-low-density-lipoprotein triacylglycerols by 70%. Exogenous oleate was not the main precursor of very-low-density lipoproteins in these animals. Lipogenesis, a minor source of very-low-density lipoproteins with the control diet in our experimental conditions, was inhibited by 84% after fat-feeding. A short-term inhibition of lipogenesis in vitro did not result in a decrease in very-low-density-lipoprotein secretion rate. The results suggest that fat-feeding decreased availability of exogenous as well as endogenous fatty acids for synthesis of very-low-density lipoproteins.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2641
Author(s):  
Yoshihide Yamanashi ◽  
Tappei Takada ◽  
Hideaki Yamamoto ◽  
Hiroshi Suzuki

Niemann-Pick C1-Like 1 (NPC1L1) is a cholesterol importer and target of ezetimibe, a cholesterol absorption inhibitor used clinically for dyslipidemia. Recent studies demonstrated that NPC1L1 regulates the intestinal absorption of several fat-soluble nutrients, in addition to cholesterol. The study was conducted to reveal new physiological roles of NPC1L1 by identifying novel dietary substrate(s). Very low-density lipoprotein and low-density lipoprotein (VLDL/LDL) are increased in Western diet (WD)-fed mice in an NPC1L1-dependent manner, so we comprehensively analyzed the NPC1L1-dependent VLDL/LDL components. Apolipoprotein M (apoM), a binding protein of sphingosine-1-phosphate (S1P: a lipid mediator), and S1P were NPC1L1-dependently increased in VLDL/LDL by WD feeding. S1P is metabolized from sphingomyelin (SM) and SM is abundant in WD, so we focused on intestinal SM absorption. In vivo studies with Npc1l1 knockout mice and in vitro studies with NPC1L1-overexpressing cells revealed that SM is a physiological substrate of NPC1L1. These results suggest a scenario in which dietary SM is absorbed by NPC1L1 in the intestine, followed by SM conversion to S1P and, after several steps, S1P is exported into the blood as the apoM-bound form in VLDL/LDL. Our findings provide insight into the functions of NPC1L1 for a better understanding of sphingolipids and S1P homeostasis.


1979 ◽  
Vol 178 (2) ◽  
pp. 455-466 ◽  
Author(s):  
B S Suri ◽  
M E Targ ◽  
D S Robinson

1. The work reported was designed to provide quantitative information about the capacity of the extrahepatic tissues of the rat to degrade injected VLD lipoproteins (very-low-density lipoproteins, d less than 1.006) to LD lipoproteins (low-density lipoproteins, d 1.006–1.063) and to study the fate of the different VLD-lipoprotein apoproteins during the degradative process. 2. Rat liver VLD lipoproteins, radioactively labelled in their protein moieties, were produced by the perfusion of the organ and were either injected into the circulation of the supradiaphragmatic rats or incubated in rat plasma at 37 degrees C. At a time (75 min) when approx. 90% of the triacylglycerol of the VLD lipoproteins had been hydrolysed the supradiaphragmatic rats were bled and VLD lipoproteins, LD lipoproteins and HD lipoproteins (high-density lipoproteins, d 1.063–1.21) were separated from their plasma and from the plasma incubated in vitro. The apoproteins of each of the lipoprotein classes were resolved by gel-filtration chromatography into three main fractions, designated peaks I, II and III. 3. Incubation of the liver VLD lipoproteins in plasma in vitro led to the transfer of about 30% of the total protein radioactivity to the HD lipoproteins. The transfer mainly involved the peak-II (arginine-rich and/or apo A-I) and peak-III (apo C) proteins. There was also a small transfer of radioactivity (about 5% of the total) to the LD lipoproteins. 4. Injection of the liver VLD lipoproteins into the circulation of the supradiaphragmatic rat resulted in the transfer of about 15% of the total VLD-lipoprotein radioactivity to the LD lipoproteins. The transfer involved mainly the peak-I (apo B) proteins and accounted for about 20% of the total apo B protein radioactivity of the injected VLD lipoproteins. When the endogenous plasma VLD lipoprotein was taken into account the transfer of apo B protein was about 35%. 5. The transfer of peak-II protein radioactivity from the VLD to the HD lipoproteins was greater in the plasma of the supradiaphragmatic rat than in the incubated plasma suggesting that there was a net transfer of peak-II apoproteins during the VLD lipoprotein degradation. The transfer of peak-III protein radioactivity was not greater in the plasma of the supradiaphragmatic rat, but there was a loss of this radioactivity from the circulation.


Biomaterials ◽  
2003 ◽  
Vol 24 (13) ◽  
pp. 2189-2194 ◽  
Author(s):  
Yan Cheng ◽  
Shenqi Wang ◽  
Yaoting Yu ◽  
Yi Yuan

Sign in / Sign up

Export Citation Format

Share Document