AbstractThe effect of time-dependent external fields on the structures formed by particles with induced dipoles dispersed in a viscous fluid is investigated by means of Brownian Dynamics simulations. The physical effects accounted for are thermal fluctuations, dipole-dipole and excluded volume interactions. The emerging structures are characterised in terms of particle clusters (orientation, size, anisotropy and percolation) and network structure. The strength of the external field is increased in one direction and then kept constant for a certain amount of time, with the structure formation being influenced by the slope of the field-strength increase. This effect can be partially rationalized by inhomogeneous time re-scaling with respect to the field strength, however, the presence of thermal fluctuations makes the scaling at low field strength inappropriate. After the re-scaling, one can observe that the lower the slope of the field increase, the more network-like and the thicker the structure is. In the second part of the study the field is also rotated instantaneously by a certain angle, and the effect of this transition on the structure is studied. For small rotation angles ($$\theta \le 20^{{\circ }}$$
θ
≤
20
∘
) the clusters rotate but stay largely intact, while for large rotation angles ($$\theta \ge 80^{{\circ }}$$
θ
≥
80
∘
) the structure disintegrates and then reforms, due to the nature of the interactions (parallel dipoles with perpendicular inter-particle vector repel each other). For intermediate angles ($$20<\theta <80^{{\circ }}$$
20
<
θ
<
80
∘
), it seems that, during rotation, the structure is altered towards a more network-like state, as a result of cluster fusion (larger clusters). The details provided in this paper concern an electric field, however, all results can be projected into the case of a magnetic field and paramagnetic particles.