Statistical Field Theory
Latest Publications


TOTAL DOCUMENTS

25
(FIVE YEARS 25)

H-INDEX

0
(FIVE YEARS 0)

Published By Oxford University Press

9780198788102, 9780191830082

2020 ◽  
pp. 791-835
Author(s):  
Giuseppe Mussardo

The Thermodynamic Bethe Ansatz (TBA) allows us to study finite size and finite temperature effects of an integrable model. This chapter investigates the integral equations that determine the free energy and gives their physical interpretation. It discusses Casimir energy, Bethe relativistic wave function, the derivation of thermodynamics, the meaning of pseudo-energy (dressed energy and momentum), infrared and ultraviolet limits, the coefficient of bulk energy, the general form of the TBA equations, the thermodynamics of the free field theories, L-channel quantization and the LeClair–Mussardo formula. It also covers the application of the Yang–Lee S-matrix, the magnetic field Ising model, and the tricritical Ising model.


2020 ◽  
pp. 676-743
Author(s):  
Giuseppe Mussardo

The Ising model in a magnetic field is one of the most beautiful examples of an integrable model. This chapter presents its exact S-matrix and the exact spectrum of its excitations, which consist of eight particles of different masses. Similarly, it discusses the exact scattering theory behind the thermal deformation of the tricritical Ising model and the unusual features of the exact S-matrix of the non-unitary Yang–Lee model. Other examples are provided by O(n) invariant models, including the important Sine–Gordon model. It also discusses multiple poles, magnetic deformation, the E 8 Toda theory, bootstrap fusion rules, non-relativistic limits and quantum group symmetry of the Sine–Gordon model.


2020 ◽  
pp. 622-675
Author(s):  
Giuseppe Mussardo

Chapter 17 discusses the S-matrix theory of two-dimensional integrable models. From a mathematical point of view, the two-dimensional nature of the systems and their integrability are the crucial features that lead to important simplifications of the formalism and its successful application. This chapter deals with the analytic theory of the S-matrix of the integrable models. A particular emphasis is put on the dynamical principle of bootstrap, which gives rise to a recursive structure of the amplitudes. It also covers several dynamical quantities, such as mass ratios or three-coupling constants, which have an elegant mathematic formulation that is also of easy geometrical interpretation.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


2020 ◽  
pp. 443-475
Author(s):  
Giuseppe Mussardo

Free theories are usually regarded as trivial examples of quantum systems. This chapter proves that this is not the case of the conformal field theories associated to the free bosonic and fermionic fields. The subject is not only full of beautiful mathematical identities but is also the source of deep physical concepts with far reaching applications. Chapter 12 also covers quantization of the bosonic field, vertex operators, the free bosonic field on a torus, modular transformations, the quantization of the free Majorana fermion, the Neveu–Schwarz and Ramond sectors, fermions on a torus, calculus for anti-commuting quantities and partition functions.


2020 ◽  
pp. 289-318
Author(s):  
Giuseppe Mussardo

Chapter 8 introduces the key ideas of the renormalization group, including how they provide a theoretical scheme and a proper language to face critical phenomena. It covers the scaling transformations of a system and their implementations in the space of the coupling constants and reducing the degrees of freedom. From this analysis, the reader is led to the important notion of relevant, irrelevant and marginal operators and then to the universality of the critical phenomena. Furthermore, the chapter also covers (as regards the RG) transformation laws, effective Hamiltonians, the Gaussian model, the Ising model, operators of quantum field theory, universal ratios, critical exponents and β‎-functions.


2020 ◽  
pp. 211-234
Author(s):  
Giuseppe Mussardo

This chapter deals with the exact solution of the two-dimensional Ising model as it is achieved through the transfer matrix formalism. It discusses the crucial role played by the commutative properties of the transfer matrices, which lead to a functional equation for their eigenvalues. The exact free energy of the Ising model and its critical point can be identified by means of the lowest eigenvalue. The chapter covers Baxter's approach, the Yang–Baxter equation and its relation to the Boltzmann weights, the R-matrix, and discusses activity away from the critical point, the six-vertex model, as well as functional equations and symmetries.


2020 ◽  
pp. 106-158
Author(s):  
Giuseppe Mussardo

Chapter 3 discusses the approximation schemes used to approach lattice statistical models that are not exactly solvable. In addition to the mean field approximation, it also considers the Bethe–Peierls approach to the Ising model. Moreover, there is a thorough discussion of the Gaussian model and its spherical version, both of which are two important systems with several points of interest. A chapter appendix provides a detailed analysis of the random walk on different lattices: apart from the importance of the subject on its own, it explains how the random walk is responsible for the critical properties of the spherical model.


2020 ◽  
pp. 744-788
Author(s):  
Giuseppe Mussardo

At the heart of a quantum field theory are the correlation functions of the various fields. In the case of integrable models, the correlators can be expressed in terms of the spectral series based on the matrix elements on the asymptotic states. These matrix elements, also known as form factors, satisfy a set of functional and recursive equations that can exactly solved in many cases of physical interest. Chapter 19 covers general properties of form factors, Faddeev–Zamolodchikov algebra, symmetric polynomials, kinematical and bound state poles, the operator space and kernel functions, the stress-energy tensor and vacuum expectation values and the Ising model in a magnetic field.


2020 ◽  
pp. 545-574
Author(s):  
Giuseppe Mussardo

Chapter 15 introduces the notion of the scaling region near the critical points, identified by the deformations of the critical action by means of the relevant operators. The renormalization group flows that originate from these deformations are subjected to important constraints, which can be expressed in terms of sum-rules. This chapter also discusses the nature of the perturbative series based on the conformal theories. Further, it describes how the analysis of the off-critical theories poses a series of interesting questions, and also covers ultraviolet divergences, structure constants, the two-point function of the Yang–Lee model, the RG and β‎-functions and the c-theorem.


Sign in / Sign up

Export Citation Format

Share Document