scholarly journals Quasi-local photon surfaces in general spherically symmetric spacetimes

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Li-Ming Cao ◽  
Yong Song

AbstractBased on the geometry of the codimension-2 surface in general spherically symmetric spacetime, we give a quasi-local definition of a photon sphere as well as a photon surface. This new definition is the generalization of the one provided by Claudel, Virbhadra, and Ellis but without referencing any umbilical hypersurface in the spacetime. The new definition effectively excludes the photon surface in spacetime without gravity. The application of the definition to the Lemaître–Tolman–Bondi (LTB) model of gravitational collapse reduces to a second order differential equation problem. We find that the energy balance on the boundary of the dust ball can provide one of the appropriate boundary conditions to this equation. Based on this crucial investigation, we find an analytic photon surface solution in the Oppenheimer–Snyder (OS) model and reasonable numerical solutions for the marginally bounded collapse in the LTB model. Interestingly, in the OS model, we find that the time difference between the occurrence of the photon surface and the event horizon is mainly determined by the total mass of the system but not the size or the strength of the gravitational field of the system.

2013 ◽  
Vol 52 (10) ◽  
pp. 3534-3542 ◽  
Author(s):  
Ashfaque H. Bokhari ◽  
A. G. Johnpillai ◽  
A. H. Kara ◽  
F. M. Mahomed ◽  
F. D. Zaman

2006 ◽  
Vol 21 (29) ◽  
pp. 2241-2250 ◽  
Author(s):  
GAMAL G. L. NASHED

We give three different spherically symmetric spacetimes for the coupled gravitational and electromagnetic fields with charged source in the tetrad theory of gravitation. One of these contains an arbitrary function and generates the others. These spacetimes give the Reissner–Nordström metric black hole. We then calculated the energy associated with these spacetimes using the superpotential method. We find that unless the time-space components of the tetrad field go to zero faster than [Formula: see text] at infinity, one gets different results for the energy.


2009 ◽  
Vol 24 (19) ◽  
pp. 1533-1542 ◽  
Author(s):  
M. SHARIF ◽  
KHADIJA IQBAL

In this paper, we discuss gravitational collapse of spherically symmetric spacetimes. We derive a general formalism by taking two arbitrary spherically symmetric spacetimes with g00 = 1. Israel's junction conditions are used to develop this formalism. The formulas for extrinsic curvature tensor are obtained. The general form of the surface energy–momentum tensor depending on extrinsic curvature tensor components is derived. This leads us to the surface energy density and the tangential pressure. The formalism is applied to two known spherically symmetric spacetimes. The results obtained show the regions for the collapse and expansion of the shell.


Sign in / Sign up

Export Citation Format

Share Document