scholarly journals Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in $$\sqrt{s} = 13$$ TeV pp collisions with the ATLAS detector

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractA search for chargino–neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $$\sqrt{s} = 13$$ s = 13  TeV pp collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 $$\hbox {fb}^{-1}$$ fb - 1 . No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($${\tilde{\chi }}^\pm _1$$ χ ~ 1 ± ) and neutralinos ($${\tilde{\chi }}^0_2$$ χ ~ 2 0 ) are considered. For pure higgsino $${\tilde{\chi }}^\pm _1{\tilde{\chi }}^0_2$$ χ ~ 1 ± χ ~ 2 0 pair-production scenarios, exclusion limits at 95% confidence level are set on $${\tilde{\chi }}^0_2$$ χ ~ 2 0 masses up to 210 GeV. Limits are also set for pure wino $${\tilde{\chi }}^\pm _1{\tilde{\chi }}^0_2$$ χ ~ 1 ± χ ~ 2 0 pair production, on $${\tilde{\chi }}^0_2$$ χ ~ 2 0 masses up to 640 GeV for decays via on-shell W and Z bosons, up to 300 GeV for decays via off-shell W and Z bosons, and up to 190 GeV for decays via W and Standard Model Higgs bosons.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract The results of a search for new phenomena in final states with b-jets and missing transverse momentum using 139 fb−1 of proton-proton data collected at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV by the ATLAS detector at the LHC are reported. The analysis targets final states produced by the decay of a pair-produced supersymmetric bottom squark into a bottom quark and a stable neutralino. The analysis also seeks evidence for models of pair production of dark matter particles produced through the decay of a generic scalar or pseudoscalar mediator state in association with a pair of bottom quarks, and models of pair production of scalar third-generation down-type leptoquarks. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered by the analysis. Bottom squark masses below 1270 GeV are excluded at 95% confidence level if the neutralino is massless. In the case of nearly mass-degenerate bottom squarks and neutralinos, the use of dedicated secondary-vertex identification techniques permits the exclusion of bottom squarks with masses up to 660 GeV for mass splittings between the squark and the neutralino of 10 GeV. These limits extend substantially beyond the regions of parameter space excluded by similar ATLAS searches performed previously.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractThis paper presents a search for direct top squark pair production in events with missing transverse momentum plus either a pair of jets consistent with Standard Model Higgs boson decay into b-quarks or a same-flavour opposite-sign dilepton pair with an invariant mass consistent with a Z boson. The analysis is performed using the proton–proton collision data at $$\sqrt{s}=13$$ s = 13 TeV collected with the ATLAS detector during the LHC Run-2, corresponding to an integrated luminosity of 139 fb$$^{-1}$$ - 1 . No excess is observed in the data above the Standard Model predictions. The results are interpreted in simplified models featuring direct production of pairs of either the lighter top squark ($$\tilde{t}_1$$ t ~ 1 ) or the heavier top squark ($$\tilde{t}_2$$ t ~ 2 ), excluding at 95% confidence level $$\tilde{t}_1$$ t ~ 1 and $$\tilde{t}_2$$ t ~ 2 masses up to about 1220 and 875 GeV, respectively.


Sign in / Sign up

Export Citation Format

Share Document