scholarly journals Inflationary quantum dynamics and backreaction using a classical-quantum correspondence

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Reginald Christian Bernardo

AbstractWe study inflationary dynamics using a recently introduced classical-quantum correspondence for investigating the backreaction of a quantum mechanical degree of freedom to a classical background. Using specifically a coupled Einstein–Klein–Gordon system, an approximation that holds well during the very early inflationary era when modes are very deep inside the Hubble horizon, we show that the backreaction of a mode of the quantum field will renormalize the Hubble parameter only if the mode’s wavelength is longer than some threshold Planckian length scale. Otherwise, the mode will destabilize the inflationary era. We also present an approximate analytical solution that supports the existence of such short-wavelength threshold and compare the results of the classical-quantum correspondence with the traditional perturbative-iterative method in semiclassical gravity.

2021 ◽  
Author(s):  
Wim Vegt

Quantum Light Theory (QLT) is the development in Quantum Field Theory (QFT). In Quantum Field Theory, the fundamental interaction fields are replacing the concept of elementary particles in Classical Quantum Mechanics. In Quantum Light Theory the fundamental interaction fields are being replaced by One Single Field. The Electromagnetic Field, generally well known as Light. To realize this theoretical concept, the fundamental theory has to go back in time 300 years, the time of Isaac Newton to follow a different path in development. Nowadays experiments question more and more the fundamental concepts in Quantum Field Theory and Classical Quantum Mechanics. The publication “Operational Resource Theory of Imaginarity“ in “Physical Review Letters” in 2021 (Ref. [2]) presenting the first experimental evidence for the measurability of “Quantum Mechanical Imaginarity” directly leads to the fundamental question in this experiment: How is it possible to measure the imaginary part of “Quantum Physical Probability Waves”? This publication provides an unambiguously answer to this fundamental question in Physics, based on the fundamental “Gravitational Electromagnetic Interaction” force densities. The “Quantum Light Theory” presents a new “Gravitational-Electromagnetic Equation” describing Electromagnetic Field Configurations which are simultaneously the Mathematical Solutions for the Quantum Mechanical “Schrodinger Wave Equation” and more exactly the Mathematical Solutions for the “Relativistic Quantum Mechanical Dirac Equation”. The Mathematical Solutions for the “Gravitational-Electromagnetic Equation” carry Mass, Electric Charge and Magnetic Spin at discrete values.


1994 ◽  
Vol 116 ◽  
pp. 417-423 ◽  
Author(s):  
Martin Holthaus

The influence of resonances in a classical Hamiltonian system on its quantum mechanical counterpart is particularly transparent in periodically driven systems with one degree of freedom. Wide semiconductor quantum wells, subjected to strong far-infrared laser radiation, may be suitable objects to study the classical-quantum correspondence experimentally.


2021 ◽  
Author(s):  
Wim Vegt

Quantum Light Theory (QLT) is the development in Quantum Field Theory (QFT). In Quantum Field Theory, the fundamental interaction fields are replacing the concept of elementary particles in Classical Quantum Mechanics. In Quantum Light Theory the fundamental interaction fields are being replaced by One Single Field. The Electromagnetic Field, generally well known as Light. To realize this theoretical concept, the fundamental theory has to go back in time 300 years, the time of Isaac Newton to follow a different path in development. Nowadays experiments question more and more the fundamental concepts in Quantum Field Theory and Classical Quantum Mechanics. The publication “Operational Resource Theory of Imaginarity“ in “Physical Review Letters” in 2021 (Ref. [2]) presenting the first experimental evidence for the measurability of “Quantum Mechanical Imaginarity” directly leads to the fundamental question in this experiment: How is it possible to measure the imaginary part of “Quantum Physical Probability Waves”? This publication provides an unambiguously answer to this fundamental question in Physics, based on the fundamental “Gravitational Electromagnetic Interaction” force densities. The “Quantum Light Theory” presents a new “Gravitational-Electromagnetic Equation” describing Electromagnetic Field Configurations which are simultaneously the Mathematical Solutions for the Quantum Mechanical “Schrodinger Wave Equation” and more exactly the Mathematical Solutions for the “Relativistic Quantum Mechanical Dirac Equation”. The Mathematical Solutions for the “Gravitational-Electromagnetic Equation” carry Mass, Electric Charge and Magnetic Spin at discrete values.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944006
Author(s):  
ChunJun Cao ◽  
Aidan Chatwin-Davies ◽  
Ashmeet Singh

According to the holographic bound, there is only a finite density of degrees of freedom in space when gravity is taken into account. Conventional quantum field theory does not conform to this bound, since in this framework, infinitely many degrees of freedom may be localized to any given region of space. In this paper, we explore the viewpoint that quantum field theory may emerge from an underlying theory that is locally finite-dimensional, and we construct a locally finite-dimensional version of a Klein–Gordon scalar field using generalized Clifford algebras. Demanding that the finite-dimensional field operators obey a suitable version of the canonical commutation relations makes this construction essentially unique. We then find that enforcing local finite dimensionality in a holographically consistent way leads to a huge suppression of the quantum contribution to vacuum energy, to the point that the theoretical prediction becomes plausibly consistent with observations.


2011 ◽  
Vol 20 (05) ◽  
pp. 729-743 ◽  
Author(s):  
JOÃO PAULO M. PITELLI ◽  
PATRICIO S. LETELIER

We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein–Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator to be self-adjoint and emphasize their importance to the interpretation of quantum singularities.


2001 ◽  
Vol 63 (2) ◽  
Author(s):  
Asher Peres ◽  
Daniel R. Terno

2018 ◽  
Vol 3 (1) ◽  
pp. 03-09 ◽  
Author(s):  
Hitler Louis ◽  
Ita B. Iserom ◽  
Ozioma U. Akakuru ◽  
Nelson A. Nzeata-Ibe ◽  
Alexander I. Ikeuba ◽  
...  

An exact analytical and approximate solution of the relativistic and non-relativistic wave equations for central potentials has attracted enormous interest in recent years. By using the basic Nikiforov-Uvarov quantum mechanical concepts and formalism, the energy eigenvalue equations and the corresponding wave functions of the Klein–Gordon and Schrodinger equations with the interaction of Modified Hylleraas-Hulthen Potentials (MHHP) were obtained using the conventional Pekeris-type approximation scheme to the orbital centrifugal term. The corresponding unnormalized eigen functions are evaluated in terms of Jacobi polynomials.


Author(s):  
Alireza Jamali

It is known since Madelung that the Schrödinger equation can be thought of as governing the evolution of an incompressible fluid, but the current theory fails to mathematically express this incompressibility in terms of the wavefunction without facing problem. In this paper after showing that the current definition of quantum-mechanical momentum as a linear operator is neither the most general nor a necessary result of the de Broglie hypothesis, a new definition is proposed that can yield both a meaningful mathematical condition for the incompressibility of the Madelung fluid, and nonlinear generalisations of Schrödinger and Klein-Gordon equations. The derived equations satisfy all conditions that are expected from a proper generalisation: simplification to their linear counterparts by a well-defined dynamical condition; Galilean and Lorentz invariance (respectively); and signifying only rays in the Hilbert space.


2014 ◽  
Vol 112 (11) ◽  
Author(s):  
Min Li ◽  
Ji-Wei Geng ◽  
Hong Liu ◽  
Yongkai Deng ◽  
Chengyin Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document