dirac equations
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 72)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
pp. 435-448
Author(s):  
Andrew M. Steane

Classical field theory, as it is applied to the most simple scalar, vector and spinor fields in flat spacetime, is described. The Klein-Gordan, Weyl and Dirac equations are obtained, and some features of their solutions are discussed. The Yukawa potential, the plane wave solutions, and the conserved currents are obtained. Spinors are introduced, both through physical pictures (flagpole and flag) and algebraic defintions (complex vectors). The relationship between spinors and four-vectors is given, and related to the Lie groups SU(2) and SO(3). The Dirac spinor is introduced.


AIP Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 115314
Author(s):  
Luca Fabbri ◽  
Roberto Cianci ◽  
Stefano Vignolo
Keyword(s):  

2021 ◽  
Vol 62 (11) ◽  
pp. 113505
Author(s):  
Luca Fabbri ◽  
Andre G. Campos
Keyword(s):  

2021 ◽  
pp. 191-206
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

The Klein–Gordon and the Dirac equations are studied as candidates for a relativistic generalisation of the Schrödinger equation. We show that the first is unacceptable because it admits solutions with arbitrarily large negative energy and has no conserved current with positive definite probability density. The Dirac equation on the other hand does have a physically acceptable conserved current, but it too suffers from the presence of negative energy solutions. We show that the latter can be interpreted as describing anti-particles. In either case there is no fully consistent interpretation as a single-particle wave equation and we are led to a formalism admitting an infinite number of degrees of freedom, that is a quantum field theory. We can still use the Dirac equation at low energies when the effects of anti-particles are negligible and we study applications in atomic physics.


Author(s):  
Ar Rohim ◽  
Kazushige Ueda ◽  
Kazuhiro Yamamoto ◽  
Shih-Yuin Lin

In this paper, we study the relativistic effect on the wave functions for a bouncing particle in a gravitational field. Motivated by the equivalence principle, we investigate the Klein–Gordon and Dirac equations in Rindler coordinates with the boundary conditions mimicking a uniformly accelerated mirror in Minkowski space. In the nonrelativistic limit, all these models in the comoving frame reduce to the familiar eigenvalue problem for the Schrödinger equation with a fixed floor in a linear gravitational potential, as expected. We find that the transition frequency between two energy levels of a bouncing Dirac particle is greater than the counterpart of a Klein–Gordon particle, while both are greater than their nonrelativistic limit. The different corrections to eigen-energies of particles of different nature are associated with the different behaviors of their wave functions around the mirror boundary.


Sign in / Sign up

Export Citation Format

Share Document