QUANTIZATION OF FREE FIELDS

Keyword(s):  
1995 ◽  
Vol 10 (06) ◽  
pp. 515-524 ◽  
Author(s):  
J. M. FIGUEROA-O'FARRILL ◽  
C. M. HULL ◽  
L. PALACIOS ◽  
E. RAMOS

The conventional quantization of w3-strings gives theories which are equivalent to special cases of bosonic strings. We explore whether a more general quantization can lead to new generalized W3-string theories by seeking to construct quantum BRST charges directly without requiring the existence of a quantum W3-algebra. We study W3-like strings with a direct space-time interpretation — that is, with matter given by explicit free field realizations. Special emphasis is placed on the attempt to construct a quantum W-string associated with the magic realizations of the classical w3-algebra. We give the general conditions for the existence of W3-like strings, and comment on how the known results fit into our general construction. Our results are negative: we find no new consistent string theories, and in particular rule out the possibility of critical strings based on the magic realizations.


2011 ◽  
Vol 335 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Moshe Jarden
Keyword(s):  

1988 ◽  
Vol 102 (3) ◽  
pp. 261-308 ◽  
Author(s):  
M. Toller
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
José Velhinho

This review is devoted to measure theoretical methods in the canonical quantization of scalar field theories. We present in some detail the canonical quantization of the free scalar field. We study the measures associated with the free fields and present two characterizations of the support of these measures. The first characterization concerns local properties of the quantum fields, whereas for the second one we introduce a sequence of variables that test the field behaviour at large distances, thus allowing distinguishing between the typical quantum fields associated with different values of the mass.


1986 ◽  
Vol 7 (2-3) ◽  
pp. 429-441 ◽  
Author(s):  
K.M. Ling ◽  
D.A. Baker
Keyword(s):  

In this contribution, my purpose is to study a new mathematical instrument introduced by me in 1958-9: the tensor and spinor propagators. These propagators are extensions of the scalar propagator of Jordan-Pauli which plays an important part in quantum-field theory. It is possible to construct, with these propagators, commutators and anticommutators for the various free fields, in the framework of general relativity theory (see Lichnerowicz 1959 a, b, c , 1960, 1961 a, b, c ; and for an independent introduction of propagators DeWitt & Brehme 1960).


2017 ◽  
Vol 53 (1) ◽  
pp. 79-97
Author(s):  
Alessandra Cipriani ◽  
Rajat Subhra Hazra

1993 ◽  
Vol 10 (1) ◽  
pp. 88 ◽  
Author(s):  
Marek W. Kowarz ◽  
Emil Wolf

2019 ◽  
Vol 20 (11) ◽  
pp. 3633-3650
Author(s):  
Andrzej Herdegen

Abstract We consider a Schrödinger particle placed in an external electromagnetic field of the form typical for scattering settings in the field theory: $$F=F^\mathrm {ret}+F^\mathrm {in}=F^\mathrm {adv}+F^\mathrm {out}$$ F = F ret + F in = F adv + F out , where the current producing $$F^{\mathrm {ret}/\mathrm {adv}}$$ F ret / adv has the past and future asymptotes homogeneous of degree $$-3$$ - 3 , and the free fields $$F^{\mathrm {in}/\mathrm {out}}$$ F in / out are radiation fields produced by currents with similar asymptotic behavior. We show that with appropriate choice of electromagnetic gauge the particle has ‘in’ and ‘out’ states reached with no further modification of the asymptotic dynamics. We use a special quantum mechanical evolution ‘picture’ in which the free evolution operator has well-defined limits for $$t\rightarrow \pm \infty $$ t → ± ∞ , and thus the scattering wave operators do not need the free evolution counteraction. The existence of wave operators in this setting is established, but the proof of asymptotic completeness is not complete: more precise characterization of the asymptotic behavior of the particle for $$|\mathbf {x}|=|t|$$ | x | = | t | would be needed.


Sign in / Sign up

Export Citation Format

Share Document