THE STRUCTURE OF A WEAKLY NONLINEAR RESONANCE

1992 ◽  
pp. 273-289
Author(s):  
B. V. CHIRIKOV ◽  
V. V. VECHESLAVOV
1989 ◽  
Vol 206 ◽  
pp. 1-23 ◽  
Author(s):  
W. K. Melville ◽  
G. G. Tomasson ◽  
D. P. Renouard

We consider the evolution of weakly nonlinear dispersive long waves in a rotating channel. The governing equations are derived and approximate solutions obtained for the initial data corresponding to a Kelvin wave. In consequence of the small nonlinear speed correction it is shown that weakly nonlinear Kelvin waves are unstable to a direct nonlinear resonance with the linear Poincaré modes of the channel. Numerical solutions of the governing equations are computed and found to give good agreement with the approximate analytical solutions. It is shown that the curvature of the wavefront and the decay of the leading wave amplitude along the channel are attributable to the Poincaré waves generated by the resonance. These results appear to give a qualitative explanation of the experimental results of Maxworthy (1983), and Renouard, Chabert d'Hières & Zhang (1987).


2013 ◽  
Vol 738 ◽  
pp. 143-183 ◽  
Author(s):  
L. J. Pratt ◽  
I. I. Rypina ◽  
T. M. Özgökmen ◽  
P. Wang ◽  
H. Childs ◽  
...  

AbstractWe investigate and quantify stirring due to chaotic advection within a steady, three-dimensional, Ekman-driven, rotating cylinder flow. The flow field has vertical overturning and horizontal swirling motion, and is an idealization of motion observed in some ocean eddies. The flow is characterized by strong background rotation, and we explore variations in Ekman and Rossby numbers, $E$ and ${R}_{o} $, over ranges appropriate for the ocean mesoscale and submesoscale. A high-resolution spectral element model is used in conjunction with linear analytical theory, weakly nonlinear resonance analysis and a kinematic model in order to map out the barriers, manifolds, resonance layers and other objects that provide a template for chaotic stirring. As expected, chaos arises when a radially symmetric background state is perturbed by a symmetry-breaking disturbance. In the background state, each trajectory lives on a torus and some of the latter survive the perturbation and act as barriers to chaotic transport, a result consistent with an extension of the KAM theorem for three-dimensional, volume-preserving flow. For shallow eddies, where $E$ is $O(1)$, the flow is dominated by thin resonant layers sandwiched between KAM-type barriers, and the stirring rate is weak. On the other hand, eddies with moderately small $E$ experience thicker resonant layers, wider-spread chaos and much more rapid stirring. This trend reverses for sufficiently small $E$, corresponding to deep eddies, where the vertical rigidity imposed by strong rotation limits the stirring. The bulk stirring rate, estimated from a passive tracer release, confirms the non-monotonic variation in stirring rate with $E$. This result is shown to be consistent with linear Ekman layer theory in conjunction with a resonant width calculation and the Taylor–Proudman theorem. The theory is able to roughly predict the value of $E$ at which stirring is maximum. For large disturbances, the stirring rate becomes monotonic over the range of Ekman numbers explored. We also explore variation in the eddy aspect ratio.


1981 ◽  
Vol 42 (C5) ◽  
pp. C5-1025-C5-1030 ◽  
Author(s):  
M. Wuttig ◽  
T. Suzuki
Keyword(s):  

2018 ◽  
Vol 50 (1) ◽  
pp. 20-38 ◽  
Author(s):  
Denis Ya. Khusainov ◽  
Jozef Diblik ◽  
Jaromir Bashtinec ◽  
Andrey V. Shatyrko

2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Sign in / Sign up

Export Citation Format

Share Document