Crystals for Stanley Symmetric Functions

Crystal Bases ◽  
2017 ◽  
pp. 133-142
Author(s):  
Thomas Lam ◽  
Luc Lapointe ◽  
Jennifer Morse ◽  
Anne Schilling ◽  
Mark Shimozono ◽  
...  

10.37236/2320 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Jason Bandlow ◽  
Jennifer Morse

We study the class $\mathcal C$ of symmetric functions whose coefficients in the Schur basis can be described by generating functions for sets of tableaux with fixed shape.  Included in this class are the Hall-Littlewood polynomials, $k$-Schur functions, and Stanley symmetric functions; functions whose Schur coefficients encode combinatorial, representation theoretic and geometric information. While Schur functions represent the cohomology of the Grassmannian variety of $GL_n$, Grothendieck functions $\{G_\lambda\}$ represent the $K$-theory of the same space.  In this paper, we give a combinatorial description of the coefficients when any element of $\mathcal C$ is expanded in the $G$-basis or the basis dual to $\{G_\lambda\}$.


1996 ◽  
Vol 157 (1-3) ◽  
pp. 193-197
Author(s):  
T Lam

2020 ◽  
Vol 343 (4) ◽  
pp. 111778
Author(s):  
Eric Marberg

10.37236/6960 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Brendan Pawlowski

To each finite subset of $\mathbb{Z}^2$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented by the Frobenius characteristic of the corresponding Specht module. We give a counterexample to this conjecture.However, we show that for the diagram variety of a permutation diagram, Liu's conjectured cohomology class $\sigma$ is at least an upper bound on the actual class $\tau$, in the sense that $\sigma - \tau$ is a nonnegative linear combination of Schubert classes. To do this, we exhibit the appropriate diagram variety as a component in a degeneration of one of Knutson's interval positroid varieties (up to Grassmann duality). A priori, the cohomology classes of these interval positroid varieties are represented by affine Stanley symmetric functions. We give a different formula for these classes as ordinary Stanley symmetric functions, one with the advantage of being Schur-positive and compatible with inclusions between Grassmannians.


2019 ◽  
Vol 168 ◽  
pp. 288-317
Author(s):  
Eric Marberg ◽  
Brendan Pawlowski

2006 ◽  
Vol 128 (6) ◽  
pp. 1553-1586 ◽  
Author(s):  
Thomas. Lam

2017 ◽  
Vol 2019 (17) ◽  
pp. 5389-5440 ◽  
Author(s):  
Zachary Hamaker ◽  
Eric Marberg ◽  
Brendan Pawlowski

Abstract The involution Stanley symmetric functions$\hat{F}_y$ are the stable limits of the analogs of Schubert polynomials for the orbits of the orthogonal group in the flag variety. These symmetric functions are also generating functions for involution words and are indexed by the involutions in the symmetric group. By construction, each $\hat{F}_y$ is a sum of Stanley symmetric functions and therefore Schur positive. We prove the stronger fact that these power series are Schur $P$-positive. We give an algorithm to efficiently compute the decomposition of $\hat{F}_y$ into Schur $P$-summands and prove that this decomposition is triangular with respect to the dominance order on partitions. As an application, we derive pattern avoidance conditions which characterize the involution Stanley symmetric functions which are equal to Schur $P$-functions. We deduce as a corollary that the involution Stanley symmetric function of the reverse permutation is a Schur $P$-function indexed by a shifted staircase shape. These results lead to alternate proofs of theorems of Ardila–Serrano and DeWitt on skew Schur functions which are Schur $P$-functions. We also prove new Pfaffian formulas for certain related involution Schubert polynomials.


1996 ◽  
Vol 157 (1-3) ◽  
pp. 241-270 ◽  
Author(s):  
T.K. Lam

2001 ◽  
Vol 235 (1) ◽  
pp. 243-260 ◽  
Author(s):  
Anders Skovsted Buch

Sign in / Sign up

Export Citation Format

Share Document