ADAPTIVE CONTROL OF MOBILE ROBOTS USING A NEURAL NETWORK

2001 ◽  
Vol 11 (03) ◽  
pp. 211-218 ◽  
Author(s):  
Celso de Sousa ◽  
Elder Moreira Hermerly

A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results.

2020 ◽  
Vol 36 (2) ◽  
pp. 187-204
Author(s):  
Chung Le ◽  
Kiem Nguyen Tien ◽  
Linh Nguyen ◽  
Tinh Nguyen ◽  
Tung Hoang

This article highlights a robust adaptive tracking backstepping control approach for a nonholonomic wheeled mobile robot (WMR) by which the bad problems of both unknown slippage and uncertainties are dealt with. The radial basis function neural network (RBFNN) in this proposed controller assists unknown smooth nonlinear dynamic functions to be approximated. Furthermore, a technical solution is also carried out to avoid actuator saturation. The validity and efficiency of this novel controller, finally, are illustrated via comparative simulation results.


2017 ◽  
Vol 8 (2) ◽  
pp. 854-859
Author(s):  
M. Saiful Azimi ◽  
Z. A. Shukri ◽  
M. Zaharuddin

The difficulties of transporting heavy mobile robots limit robotic experiments in agriculture. Virtual reality however, offers an alternative to conduct experiments in agriculture. This paper presents an application of virtual reality in a robot navigational experiment using SolidWorks and simulated into MATLAB. Trajectories were initiated using Probabilistic Roadmap and compared based on travel time, distance and tracking error, and the efficiency was calculated. The simulation results showed that the proposed method was able to conduct the navigational experiment inside the virtual environment. U-turn trajectory was chosen as the best trajectory for crop inspection with 82.7% efficiency.


Author(s):  
Jeffrey L. Newcomer

Abstract This paper presents an algorithm for generating Smooth Collision Avoidance Trajectories (SCAT). SCAT generation is a method that allows a mobile robot that is moving along a pre-planned path to alter a section of its path, so that it may smoothly exit the original path, avoid a predicted collision, and return to the original path smoothly and on schedule. The SCAT generation algorithm is an improvement over off-line methods, as it requires minimal a priori information, and is more robust than pre-planned methods by its very nature. The SCAT algorithm is also an improvement over on-line schemes that only alter velocity along a pre-planned path, as it is able to avoid collisions in cases that those methods cannot. Details of the SCAT generation algorithm are developed herein, followed by examples of the algorithm in action. Simulation results show that the SCAT algorithm is very dependable, given that it can be provided with reasonably accurate in-formation about the location of dynamic obstacles in its vicinity.


Sign in / Sign up

Export Citation Format

Share Document