The almost complex structure on 𝕊6 and related Schrödinger flows
In this paper, by using the [Formula: see text]-structure on Im[Formula: see text] from the octonions [Formula: see text], the [Formula: see text]-binormal motion of curves [Formula: see text] in [Formula: see text] associated to the almost complex structure on [Formula: see text] is studied. The motion is proved to be equivalent to Schrödinger flows from [Formula: see text] to [Formula: see text], and also to a nonlinear Schrödinger-type system (NLSS) in three unknown complex functions that generalizes the famous correspondence between the binormal motion of curves in [Formula: see text] and the focusing nonlinear Schrödinger (NLS) equation. Some related geometric properties of the surface [Formula: see text] in Im[Formula: see text] swept by [Formula: see text] are determined.