scholarly journals Coclosed G2-structures inducing nilsolitons

2018 ◽  
Vol 30 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Leonardo Bagaglini ◽  
Marisa Fernández ◽  
Anna Fino

Abstract We show obstructions to the existence of a coclosed {\mathrm{G}_{2}} -structure on a Lie algebra {\mathfrak{g}} of dimension seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from {\mathfrak{g}} to a six-dimensional Lie algebra {\mathfrak{h}} , with the kernel contained in the center of {\mathfrak{g}} , then any coclosed {\mathrm{G}_{2}} -structure on {\mathfrak{g}} induces a closed and stable three form on {\mathfrak{h}} that defines an almost complex structure on {\mathfrak{h}} . As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed {\mathrm{G}_{2}} -structures. We also prove that each one of these Lie algebras has a coclosed {\mathrm{G}_{2}} -structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed {\mathrm{G}_{2}} -structures. The existence of contact metric structures is also studied.

2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


1982 ◽  
Vol 34 (6) ◽  
pp. 1215-1239 ◽  
Author(s):  
L. J. Santharoubane

Introduction. The natural problem of determining all the Lie algebras of finite dimension was broken in two parts by Levi's theorem:1) the classification of semi-simple Lie algebras (achieved by Killing and Cartan around 1890)2) the classification of solvable Lie algebras (reduced to the classification of nilpotent Lie algebras by Malcev in 1945 (see [10])).The Killing form is identically equal to zero for a nilpotent Lie algebra but it is non-degenerate for a semi-simple Lie algebra. Therefore there was a huge gap between those two extreme cases. But this gap is only illusory because, as we will prove in this work, a large class of nilpotent Lie algebras is closely related to the Kac-Moody Lie algebras. These last algebras could be viewed as infinite dimensional version of the semisimple Lie algebras.


2015 ◽  
Vol 58 (2) ◽  
pp. 281-284 ◽  
Author(s):  
Matthias Kalus

AbstractA complex Lie supergroup can be described as a real Lie supergroup with integrable almost complex structure. The necessary and sufficient conditions on an almost complex structure on a real Lie supergroup for defining a complex Lie supergroup are deduced. The classification of real Lie supergroups with such almost complex structures yields a new approach to the known classification of complex Lie supergroups by complexHarish-Chandra superpairs. A universal complexi ûcation of a real Lie supergroup is constructed


2002 ◽  
Author(s):  
Θεόδουλος Ταπανίδης

In this paper we study special properties of Nilpotent Lie Algebras of dimension eight over the field K of characteristic zero. The complete classification of these Lie Algebras has been done recently and there exist a great number of open problems. The problems, which have been solved in the thesis, are the following: i. There is not an Algebra of this category, which has two maximum abellian ideals of different dimension. ii. Extension of a Nilpotent Lie Algebra to others of bigger dimension. iii. Determination of Nilpotent Lie Algebras from another category iv. Determination of characteristic Nilpotent Lie Algebras from this category of Nilpotent Lie Algebras of dimensions eight. This thesis has three chapters. Each of them is analyzed as follows. The first chapter contains basic elements of the theory of Nilpotent Lie Algebras. This has eleven paragraphs; each of them consists of the following. The first paragraph has a general theory of algebra. Basic elements about Lie Algebras are given in the second paragraph. The structure constants of a Lie algebra are also given in this paragraph and also some relations between them. Finally it contains the determination of a Lie Algebra by constant structure and conversely. The third paragraph includes mappings between Lie Algebras. The notions of homomorphic and isomorphic Lie Algebras are defined by these mappings. The definitions of subalgebras and ideals of Lie Algebras are given in the fourth paragraph. It also contains some of their properties. Finally it has the notion of quotient Lie Algebra. The derivations of a Lie Algebra are contain in the fifth paragraph. It also contains some of their properties. The sixth paragraph includes some basic subsets of Lie Algebra. These basic sets play an important role in the theory of Lie Algebras. From a Lie Algebra g we can form sequences of ideals of g. Two basic ideals are the central sequence and the derived sequence. These are in the seventh paragraph. The eighth paragraph contains some elements of solvable Lie Algebras. Some elements of Nilpotent Lie Algebras are included in the ninth paragraph. The tenth paragraph contains basic elements of simple and semi-simple Lie Algebras. Finally the problem of classification of Lie Algebras is included in the last paragraph. The purpose of the second chapter is to study some properties of Nilpotent Lie Algebras of dimension eight. The whole chapter contains three paragraphs; each of them is analyzed as follows. The first paragraph describes the maximum abelian ideals of a Nilpotent Lie Algebra. The Nilpotent Lie Algebras of dimension eight are studied in the second paragraph. It is given their separation in categories according to the number of parameters, which have the none zero Lie brackets. Special categories of Nilpotent Lie Algebras of dimension eight are determined in the third paragraph. Furthermore some basic problems are studied for which we have some solutions. One of them is to determine a Nilpotent Lie Algebra of dimension eight which has two maximum abelian ideals of different dimension. The answer to this problem is negative, that mean there exists no such Lie Algebra of dimension eight, which has two maximum abelian ideals of different dimension. In this paragraph is also given the theory of extension of a Nilpotent Lie Algebra of bigger dimensions. The third chapter contains the study of Nilpotent Lie Algebras of dimension eight which are characteristically Nilpotent for all the parameters. Another category of Nilpotent Lie Algebras is determined which is characteristically Nilpotent for special values of parameters. The chapter has two paragraphs. The first paragraph gives special elements for characteristically Nilpotent Lie Algebras, which are necessary for the next paragraph. In the second paragraph we determine the category of Nilpotent Lie Algebras of dimension eight which are characteristically Nilpotent. We also determine other such Nilpotent Lie Algebras of dimension eight for special values of the parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hulya Kadioglu

In this paper, we study nilpotent Lie algebras that admit nilsoliton metric with simple pre-Einstein derivation. Given a Lie algebra η , we would like to compute as much of its structure as possible. The structural components we consider in this study are the structure constants, the index, and the rank of the nilsoliton derivations. For this purpose, we prove necessary or sufficient conditions for an algebra to admit such metrics. Particularly, we prove theorems for the computation of the Jacobi identity for a given algebra so that we can solve the system of the equation(s) and find the structure constants of the nilsoliton.


Author(s):  
K. Yano ◽  
T. Sumitomo

A seven-dimensional Euclidean space considered as the space of purely imaginary Cayley numbers is called a Cayley space. The six-dimensional sphere in a Cayley space admits an almost complex structure which is not integrable. Moreover the algebraic properties of the imaginary Cayley numbers induce an almost complex structure on any oriented differentiable hypersurface in the Cayley space. The Riemannian metric induced on the hypersurface from the metric of the Cayley space is Hermitian with respect to the almost complex structure.It is proved that the induced Hermitian structure of an oriented hypersurface in the Cayley space is almost Kaehlerian if and only if it is Kaehlerian, that a necessary and sufficient condition for a hypersurface in a Cayley space to be an almost Tachibana space is that the hypersurface be totally umbilical, and that a totally umbilical hypersurface in a Cayley space admits a complex structure when and only when it is totally geodesic.For a hypersurface in the Cayley space with the induced Hermitian structure which is an *O-space it is proved that all the principal curvatures of the hypersurface are constant, and from this is deduced a classification of such *O-spaces.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 465
Author(s):  
Javier de Lucas ◽  
Daniel Wysocki

This work introduces a new concept, the so-called Darboux family, which is employed to determine coboundary Lie bialgebras on real four-dimensional, indecomposable Lie algebras, as well as geometrically analysying, and classifying them up to Lie algebra automorphisms, in a relatively easy manner. The Darboux family notion can be considered as a generalisation of the Darboux polynomial for a vector field. The classification of r-matrices and solutions to classical Yang–Baxter equations for real four-dimensional indecomposable Lie algebras is also given in detail. Our methods can further be applied to general, even higher-dimensional, Lie algebras. As a byproduct, a method to obtain matrix representations of certain Lie algebras with a non-trivial center is developed.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mercedes Pérez ◽  
Francisco P. Pérez ◽  
Emilio Jiménez

On the basis of the family of quasifiliform Lie algebra laws of dimension 9 of 16 parameters and 17 constraints, this paper is devoted to identify the invariants that completely classify the algebras over the complex numbers except for isomorphism. It is proved that the nullification of certain parameters or of parameter expressions divides the family into subfamilies such that any couple of them is nonisomorphic and any quasifiliform Lie algebra of dimension 9 is isomorphic to one of them. The iterative and exhaustive computation with Maple provides the classification, which divides the original family into 263 subfamilies, composed of 157 simple algebras, 77 families depending on 1 parameter, 24 families depending on 2 parameters, and 5 families depending on 3 parameters.


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document