scholarly journals THE AREA LAW IN MATRIX MODELS FOR LARGE N QCD STRINGS

2002 ◽  
Vol 13 (04) ◽  
pp. 555-563 ◽  
Author(s):  
K. N. ANAGNOSTOPOULOS ◽  
W. BIETENHOLZ ◽  
J. NISHIMURA

We study the question whether matrix models obtained in the zero volume limit of 4d Yang–Mills theories can describe large N QCD strings. The matrix model we use is a variant of the Eguchi–Kawai model in terms of Hermitian matrices, but without any twists or quenching. This model was originally proposed as a toy model of the IIB matrix model. In contrast to common expectations, we do observe the area law for Wilson loops in a significant range of scale of the loop area. Numerical simulations show that this range is stable as N increases up to 768, which strongly suggests that it persists in the large N limit. Hence the equivalence to QCD strings may hold for length scales inside a finite regime.

1998 ◽  
Vol 13 (26) ◽  
pp. 2085-2094 ◽  
Author(s):  
B. SATHIAPALAN

We use the matrix formalism to investigate what happens to strings above the Hagedorn temperature. We show that is not a limiting temperature but a temperature at which the continuum string picture breaks down. We study a collection of N D-0-branes arranged to form a string having N units of light-cone momentum. We find that at high temperatures the favored phase is one where the string worldsheet has disappeared and the low-energy degrees of freedom consists of N2 massless particles ("gluons"). The nature of the transition is very similar to the deconfinement transition in large-N Yang–Mills theories.


1998 ◽  
Vol 13 (12) ◽  
pp. 921-936 ◽  
Author(s):  
N. D. HARI DASS ◽  
B. SATHIAPALAN

We study a configuration of a parallel F- (fundamental) and D-string in IIB string theory by considering its T-dual configuration in the matrix model description of M-theory. We show that certain nonperturbative features of string theory such as O(e-1/gs) effects due to soliton loops, the existence of bound state (1,1) strings and manifest S-duality, can be seen in matrix models. We discuss certain subtleties that arise in the large-N limit when membranes are wrapped around compact dimensions.


1997 ◽  
Vol 12 (03) ◽  
pp. 183-193 ◽  
Author(s):  
I. I. Kogan ◽  
R. J. Szabo ◽  
G. W. Semenoff

We discuss some properties of a supersymmetric matrix model that is the dimensional reduction of supersymmetric Yang–Mills theory in 10 dimensions and which has been recently argued to represent the short-distance structure of M-theory in the infinite momentum frame. We describe a reduced version of the matrix quantum mechanics and derive the Nicolai map of the simplified supersymmetric matrix model. We use this to argue that there are no phase transitions in the large-N limit, and hence that S-duality is preserved in the full 11-dimensional theory.


2004 ◽  
Vol 19 (22) ◽  
pp. 1661-1667 ◽  
Author(s):  
BRANISLAV JURČO

We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brézin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Large-N limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Alejandro Cabo-Bizet ◽  
Sameer Murthy

Abstract We find a family of complex saddle-points at large N of the matrix model for the superconformal index of SU(N ) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory on S3× S1 with one chemical potential τ . The saddle-point configurations are labelled by points (m, n) on the lattice Λτ = ℤτ + ℤ with gcd(m, n) = 1. The eigenvalues at a given saddle are uniformly distributed along a string winding (m, n) times along the (A, B) cycles of the torus ℂ/Λτ . The action of the matrix model extended to the torus is closely related to the Bloch-Wigner elliptic dilogarithm, and the related Bloch formula allows us to calculate the action at the saddle-points in terms of real-analytic Eisenstein series. The actions of (0, 1) and (1, 0) agree with that of pure AdS5 and the supersymmetric AdS5 black hole, respectively. The black hole saddle dominates the canonical ensemble when τ is close to the origin, and there are new saddles that dominate when τ approaches rational points. The extension of the action in terms of modular forms leads to a simple treatment of the Cardy-like limit τ → 0.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


1991 ◽  
Vol 06 (25) ◽  
pp. 4491-4515 ◽  
Author(s):  
OLAF LECHTENFELD ◽  
RASHMI RAY ◽  
ARUP RAY

We investigate a zero-dimensional Hermitian one-matrix model in a triple-well potential. Its tree-level phase structure is analyzed semiclassically as well as in the framework of orthogonal polynomials. Some multiple-arc eigenvalue distributions in the first method correspond to quasiperiodic large-N behavior of recursion coefficients for the second. We further establish this connection between the two approaches by finding three-arc saddle points from orthogonal polynomials. The latter require a modification for nondegenerate potential minima; we propose weighing the average over potential wells.


1997 ◽  
Vol 12 (31) ◽  
pp. 2331-2340 ◽  
Author(s):  
L. Chekhov ◽  
K. Zarembo

We calculate an effective action and measure induced by the integration over the auxiliary field in the matrix model recently proposed to describe IIB superstrings. It is shown that the measure of integration over the auxiliary matrix is uniquely determined by locality and reparametrization invariance of the resulting effective action. The large-N limit of the induced measure for string coordinates is discussed in detail. It is found to be ultralocal and, thus, is possibly irrelevant in the continuum limit. The model of the GKM type is considered in relation to the effective action problem.


1995 ◽  
Vol 10 (29) ◽  
pp. 4203-4224 ◽  
Author(s):  
TOHRU EGUCHI ◽  
KENTARO HORI ◽  
SUNG-KIL YANG

In this paper we describe in some detail the representation of the topological CP1 model in terms of a matrix integral which we have introduced in a previous article. We first discuss the integrable structure of the CP1 model and show that it is governed by an extension of the one-dimensional Toda hierarchy. We then introduce a matrix model which reproduces the sum over holomorphic maps from arbitrary Riemann surfaces onto CP1. We compute intersection numbers on the moduli space of curves using a geometrical method and show that the results agree with those predicted by the matrix model. We also develop a Landau-Ginzburg (LG) description of the CP1 model using a superpotential eX + et0,Q e-X given by the Lax operator of the Toda hierarchy (X is the LG field and t0,Q is the coupling constant of the Kähler class). The form of the superpotential indicates the close connection between CP1 and N=2 supersymmetric sine-Gordon theory which was noted sometime ago by several authors. We also discuss possible generalizations of our construction to other manifolds and present an LG formulation of the topological CP2 model.


1994 ◽  
Vol 09 (21) ◽  
pp. 1963-1973 ◽  
Author(s):  
D.V. BOULATOV

The matrix model with a Bethe tree embedding space (coincides at large N with the Kazakov-Migdal “induced QCD” model1) is investigated. We further elaborate the Riemann-Hilbert approach of Ref. 2 assuming certain holomorphic properties of the solution. The critical scaling (an edge singularity of the density) is found to be [Formula: see text][Formula: see text] arccos D, for |D|<1, and [Formula: see text] arccos [Formula: see text] for D>1. Explicit solutions are constructed at D=1/2 and D=∞.


Sign in / Sign up

Export Citation Format

Share Document