COMPUTER MODEL OF BIOPOLYMER CRYSTAL GROWTH AND AGGREGATION BY ADDITION OF MACROMOLECULAR UNITS — A COMPARATIVE STUDY

2006 ◽  
Vol 17 (07) ◽  
pp. 1037-1053 ◽  
Author(s):  
J. SIÓDMIAK ◽  
A. GADOMSKI

We discuss the results of a computer simulation of the biopolymer crystal growth and aggregation based on the 2D lattice Monte Carlo technique and the HP approximation of the biopolymers. As a modeled molecule (growth unit) we comparatively consider the previously studied non-mutant lysozyme protein, Protein Data Bank (PDB) ID: 193L, which forms, under a certain set of thermodynamic-kinetic conditions, the tetragonal crystals, and an amyloidogenic variant of the lysozyme, PDB ID: 1LYY, which is known as fibril-yielding and prone-to-aggregation agent. In our model, the site-dependent attachment, detachment and migration processes are involved. The probability of growth unit motion, attachment and detachment to/from the crystal surface are assumed to be proportional to the orientational factor representing the anisotropy of the molecule. Working within a two-dimensional representation of the truly three-dimensional process, we also argue that the crystal grows in a spiral way, whereby one or more screw dislocations on the crystal surface give rise to a terrace. We interpret the obtained results in terms of known models of crystal growth and aggregation such as B-C-F (Burton-Cabrera-Frank) dislocation driven growth and M-S (Mullins-Sekerka) instability concept, with stochastic aspects supplementing the latter. We discuss the conditions under which crystals vs non-crystalline protein aggregates appear, and how the process depends upon difference in chemical structure of the protein molecule seen as the main building block of the elementary crystal cell.

2019 ◽  
Vol 52 (6) ◽  
pp. 1422-1426
Author(s):  
Rajendran Santhosh ◽  
Namrata Bankoti ◽  
Adgonda Malgonnavar Padmashri ◽  
Daliah Michael ◽  
Jeyaraman Jeyakanthan ◽  
...  

Missing regions in protein crystal structures are those regions that cannot be resolved, mainly owing to poor electron density (if the three-dimensional structure was solved using X-ray crystallography). These missing regions are known to have high B factors and could represent loops with a possibility of being part of an active site of the protein molecule. Thus, they are likely to provide valuable information and play a crucial role in the design of inhibitors and drugs and in protein structure analysis. In view of this, an online database, Missing Regions in Polypeptide Chains (MRPC), has been developed which provides information about the missing regions in protein structures available in the Protein Data Bank. In addition, the new database has an option for users to obtain the above data for non-homologous protein structures (25 and 90%). A user-friendly graphical interface with various options has been incorporated, with a provision to view the three-dimensional structure of the protein along with the missing regions using JSmol. The MRPC database is updated regularly (currently once every three months) and can be accessed freely at the URL http://cluster.physics.iisc.ac.in/mrpc.


Author(s):  
Gabriel Jan Abrahams ◽  
Janet Newman

Crystallization is in many cases a critical step for solving the three-dimensional structure of a protein molecule. Determining which set of chemicals to use in the initial screen is typically agnostic of the protein under investigation; however, crystallization efficiency could potentially be improved if this were not the case. Previous work has assumed that sequence similarity may provide useful information about appropriate crystallization cocktails; however, the authors are not aware of any quantitative verification of this assumption. This research investigates whether, given current information, one can detect any correlation between sequence similarity and crystallization cocktails. BLAST was used to quantitate the similarity between protein sequences in the Protein Data Bank, and this was compared with three estimations of the chemical similarities of the respective crystallization cocktails. No correlation was detected between proteins of similar (but not identical) sequence and their crystallization cocktails, suggesting that methods of determining screens based on this assumption are unlikely to result in screens that are better than those currently in use.


2008 ◽  
Vol 41 (5) ◽  
pp. 952-954 ◽  
Author(s):  
S. Praveen ◽  
J. Ramesh ◽  
P. Sivasankari ◽  
G. Sowmiya ◽  
K. Sekar

By exploiting the fast-growing Internet technology, the interactive computing serverWater Analysis Package(WAP, version 2.0) has been updated with more flexible options to better understand the role of the water O atoms present in three-dimensional macromolecular (protein or nucleic acid) structures. The updated robust server facilitates the computation and visualization of water molecules from various hydration shells, interfacial water molecules and those water molecules that stabilize various secondary structural elements. It is also possible to detect the interactions of water molecules with various parts (polar atoms, nonpolar atoms, main-chain and side-chain atoms) of the protein molecule. Furthermore, a molecular graphics visualization program is interfaced to display the nature of the interactions of the water molecules. The Protein Data Bank archive interfaced with the server is updated every week; hence users get to analyse the latest structures. The computing server can be obtained from http://dicsoft2.physics.iisc.ernet.in/wap/.


Author(s):  
H. Hashimoto ◽  
Y. Sugimoto ◽  
Y. Takai ◽  
H. Endoh

As was demonstrated by the present authors that atomic structure of simple crystal can be photographed by the conventional 100 kV electron microscope adjusted at “aberration free focus (AFF)” condition. In order to operate the microscope at AFF condition effectively, highly stabilized electron beams with small energy spread and small beam divergence are necessary. In the present observation, a 120 kV electron microscope with LaB6 electron gun was used. The most of the images were taken with the direct electron optical magnification of 1.3 million times and then magnified photographically.1. Twist boundary of ZnSFig. 1 is the image of wurtzite single crystal with twist boundary grown on the surface of zinc crystal by the reaction of sulphur vapour of 1540 Torr at 500°C. Crystal surface is parallel to (00.1) plane and electron beam is incident along the axis normal to the crystal surface. In the twist boundary there is a dislocation net work between two perfect crystals with a certain rotation angle.


2020 ◽  
Vol 5 (7) ◽  
Author(s):  
Lucas Paul ◽  
Celestin N. Mudogo ◽  
Kelvin M. Mtei ◽  
Revocatus L. Machunda ◽  
Fidele Ntie-Kang

AbstractCassava is a strategic crop, especially for developing countries. However, the presence of cyanogenic compounds in cassava products limits the proper nutrients utilization. Due to the poor availability of structure discovery and elucidation in the Protein Data Bank is limiting the full understanding of the enzyme, how to inhibit it and applications in different fields. There is a need to solve the three-dimensional structure (3-D) of linamarase from cassava. The structural elucidation will allow the development of a competitive inhibitor and various industrial applications of the enzyme. The goal of this review is to summarize and present the available 3-D modeling structure of linamarase enzyme using different computational strategies. This approach could help in determining the structure of linamarase and later guide the structure elucidation in silico and experimentally.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Zorana Lopandić ◽  
Luka Dragačević ◽  
Dragan Popović ◽  
Uros Andjelković ◽  
Rajna Minić ◽  
...  

Fluorescently labeled lectins are useful tools for in vivo and in vitro studies of the structure and function of tissues and various pathogens such as viruses, bacteria, and fungi. For the evaluation of high-mannose glycans present on various glycoproteins, a three-dimensional (3D) model of the chimera was designed from the crystal structures of recombinant banana lectin (BanLec, Protein Data Bank entry (PDB): 5EXG) and an enhanced green fluorescent protein (eGFP, PDB 4EUL) by applying molecular modeling and molecular mechanics and expressed in Escherichia coli. BanLec-eGFP, produced as a soluble cytosolic protein of about 42 kDa, revealed β-sheets (41%) as the predominant secondary structures, with the emission peak maximum detected at 509 nm (excitation wavelength 488 nm). More than 65% of the primary structure was confirmed by mass spectrometry. Competitive BanLec-eGFP binding to high mannose glycans of the influenza vaccine (Vaxigrip®) was shown in a fluorescence-linked lectin sorbent assay (FLLSA) with monosaccharides (mannose and glucose) and wild type BanLec and H84T BanLec mutant. BanLec-eGFP exhibited binding to mannose residues on different strains of Salmonella in flow cytometry, with especially pronounced binding to a Salmonella Typhi clinical isolate. BanLec-eGFP can be a useful tool for screening high-mannose glycosylation sites on different microorganisms.


Sign in / Sign up

Export Citation Format

Share Document