An effective similarity measure based on kernel spectral method for complex networks
Node similarity measure is a special important task in complex network analysis and plays a critical role in a multitude of applications, such as link prediction, community detection, and recommender systems. In this study, we are interested in link-based similarity measures, which only concern the structural information of networks when estimating node similarity. A new algorithm is proposed by adopting the idea of kernel spectral method to quantify the similarity of nodes. When computing the kernel matrix, the proposed algorithm makes use of local structural information, but it takes advantage of global information when constructing the feature matrix. Thence, the proposed algorithm could better capture potential relationships between nodes. To show the superiority of our algorithm over others, we conduct experiments on 10 real-world networks. Experimental results demonstrate that our algorithm yields more reasonable results and better performance of accuracy than baselines.