scholarly journals Learning Signed Network Embedding via Graph Attention

2020 ◽  
Vol 34 (04) ◽  
pp. 4772-4779 ◽  
Author(s):  
Yu Li ◽  
Yuan Tian ◽  
Jiawei Zhang ◽  
Yi Chang

Learning the low-dimensional representations of graphs (i.e., network embedding) plays a critical role in network analysis and facilitates many downstream tasks. Recently graph convolutional networks (GCNs) have revolutionized the field of network embedding, and led to state-of-the-art performance in network analysis tasks such as link prediction and node classification. Nevertheless, most of the existing GCN-based network embedding methods are proposed for unsigned networks. However, in the real world, some of the networks are signed, where the links are annotated with different polarities, e.g., positive vs. negative. Since negative links may have different properties from the positive ones and can also significantly affect the quality of network embedding. Thus in this paper, we propose a novel network embedding framework SNEA to learn Signed Network Embedding via graph Attention. In particular, we propose a masked self-attentional layer, which leverages self-attention mechanism to estimate the importance coefficient for pair of nodes connected by different type of links during the embedding aggregation process. Then SNEA utilizes the masked self-attentional layers to aggregate more important information from neighboring nodes to generate the node embeddings based on balance theory. Experimental results demonstrate the effectiveness of the proposed framework through signed link prediction task on several real-world signed network datasets.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Gu ◽  
Aditya Tandon ◽  
Yong-Yeol Ahn ◽  
Filippo Radicchi

AbstractNetwork embedding is a general-purpose machine learning technique that encodes network structure in vector spaces with tunable dimension. Choosing an appropriate embedding dimension – small enough to be efficient and large enough to be effective – is challenging but necessary to generate embeddings applicable to a multitude of tasks. Existing strategies for the selection of the embedding dimension rely on performance maximization in downstream tasks. Here, we propose a principled method such that all structural information of a network is parsimoniously encoded. The method is validated on various embedding algorithms and a large corpus of real-world networks. The embedding dimension selected by our method in real-world networks suggest that efficient encoding in low-dimensional spaces is usually possible.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Dong Liu ◽  
Yan Ru ◽  
Qinpeng Li ◽  
Shibin Wang ◽  
Jianwei Niu

Network embedding aims to learn the low-dimensional representations of nodes in networks. It preserves the structure and internal attributes of the networks while representing nodes as low-dimensional dense real-valued vectors. These vectors are used as inputs of machine learning algorithms for network analysis tasks such as node clustering, classification, link prediction, and network visualization. The network embedding algorithms, which considered the community structure, impose a higher level of constraint on the similarity of nodes, and they make the learned node embedding results more discriminative. However, the existing network representation learning algorithms are mostly unsupervised models; the pairwise constraint information, which represents community membership, is not effectively utilized to obtain node embedding results that are more consistent with prior knowledge. This paper proposes a semisupervised modularized nonnegative matrix factorization model, SMNMF, while preserving the community structure for network embedding; the pairwise constraints (must-link and cannot-link) information are effectively fused with the adjacency matrix and node similarity matrix of the network so that the node representations learned by the model are more interpretable. Experimental results on eight real network datasets show that, comparing with the representative network embedding methods, the node representations learned after incorporating the pairwise constraints can obtain higher accuracy in node clustering task and the results of link prediction, and network visualization tasks indicate that the semisupervised model SMNMF is more discriminative than unsupervised ones.


Author(s):  
Bornali Phukon ◽  
Akash Anil ◽  
Sanasam Ranbir Singh ◽  
Priyankoo Sarmah

WordNets built for low-resource languages, such as Assamese, often use the expansion methodology. This may result in missing lexical entries and missing synonymy relations. As the Assamese WordNet is also built using the expansion method, using the Hindi WordNet, it also has missing synonymy relations. As WordNets can be visualized as a network of unique words connected by synonymy relations, link prediction in complex network analysis is an effective way of predicting missing relations in a network. Hence, to predict the missing synonyms in the Assamese WordNet, link prediction methods were used in the current work that proved effective. It is also observed that for discovering missing relations in the Assamese WordNet, simple local proximity-based methods might be more effective as compared to global and complex supervised models using network embedding. Further, it is noticed that though a set of retrieved words are not synonyms per se, they are semantically related to the target word and may be categorized as semantic cohorts.


2020 ◽  
Vol 34 (16) ◽  
pp. 2050169
Author(s):  
Wei Yu ◽  
Xiaoyu Liu ◽  
Bo Ouyang

In network science, link prediction is a technique used to predict missing or future relationships based on currently observed connections. Much attention from the network science community is paid to this direction recently. However, most present approaches predict links based on ad hoc similarity definitions. To address this issue, we propose a link prediction algorithm named Transferring Similarity Based on Adjacency Embedding (TSBAE). TSBAE is based on network embedding, where the potential information of the structure is preserved in the embedded vector space, and the similarity is inherently captured by the distance of these vectors. Furthermore, to accommodate the fact that the similarity should be transferable, indirect similarity between nodes is incorporated to improve the accuracy of prediction. The experimental results on 10 real-world networks show that TSBAE outperforms the baseline algorithms in the task of link prediction, with the cost of tuning a free parameter in the prediction.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


2020 ◽  
Author(s):  
Mustafa Coşkun ◽  
Mehmet Koyutürk

AbstractMotivationLink prediction is an important and well-studied problem in computational biology, with a broad range of applications including disease gene prioritization, drug-disease associations, and drug response in cancer. The general principle in link prediction is to use the topological characteristics and the attributes–if available– of the nodes in the network to predict new links that are likely to emerge/disappear. Recently, graph representation learning methods, which aim to learn a low-dimensional representation of topological characteristics and the attributes of the nodes, have drawn increasing attention to solve the link prediction problem via learnt low-dimensional features. Most prominently, Graph Convolution Network (GCN)-based network embedding methods have demonstrated great promise in link prediction due to their ability of capturing non-linear information of the network. To date, GCN-based network embedding algorithms utilize a Laplacian matrix in their convolution layers as the convolution matrix and the effect of the convolution matrix on algorithm performance has not been comprehensively characterized in the context of link prediction in biomedical networks. On the other hand, for a variety of biomedical link prediction tasks, traditional node similarity measures such as Common Neighbor, Ademic-Adar, and other have shown promising results, and hence there is a need to systematically evaluate the node similarity measures as convolution matrices in terms of their usability and potential to further the state-of-the-art.ResultsWe select 8 representative node similarity measures as convolution matrices within the single-layered GCN graph embedding method and conduct a systematic comparison on 3 important biomedical link prediction tasks: drug-disease association (DDA) prediction, drug–drug interaction (DDI) prediction, protein–protein interaction (PPI) prediction. Our experimental results demonstrate that the node similarity-based convolution matrices significantly improves GCN-based embedding algorithms and deserve more attention in the future biomedical link predictionAvailabilityOur method is implemented as a python library and is available at [email protected] informationSupplementary data are available at Bioinformatics online.


Author(s):  
Yu Li ◽  
Ying Wang ◽  
Tingting Zhang ◽  
Jiawei Zhang ◽  
Yi Chang

Network embedding is an effective approach to learn the low-dimensional representations of vertices in networks, aiming to capture and preserve the structure and inherent properties of networks. The vast majority of existing network embedding methods exclusively focus on vertex proximity of networks, while ignoring the network internal community structure. However, the homophily principle indicates that vertices within the same community are more similar to each other than those from different communities, thus vertices within the same community should have similar vertex representations. Motivated by this, we propose a novel network embedding framework NECS to learn the Network Embedding with Community Structural information, which preserves the high-order proximity and incorporates the community structure in vertex representation learning. We formulate the problem into a principled optimization framework and provide an effective alternating algorithm to solve it. Extensive experimental results on several benchmark network datasets demonstrate the effectiveness of the proposed framework in various network analysis tasks including network reconstruction, link prediction and vertex classification.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-18
Author(s):  
Sezin Kircali Ata ◽  
Yuan Fang ◽  
Min Wu ◽  
Jiaqi Shi ◽  
Chee Keong Kwoh ◽  
...  

Real-world networks often exist with multiple views, where each view describes one type of interaction among a common set of nodes. For example, on a video-sharing network, while two user nodes are linked, if they have common favorite videos in one view, then they can also be linked in another view if they share common subscribers. Unlike traditional single-view networks, multiple views maintain different semantics to complement each other. In this article, we propose M ulti-view coll A borative N etwork E mbedding (MANE), a multi-view network embedding approach to learn low-dimensional representations. Similar to existing studies, MANE hinges on diversity and collaboration—while diversity enables views to maintain their individual semantics, collaboration enables views to work together. However, we also discover a novel form of second-order collaboration that has not been explored previously, and further unify it into our framework to attain superior node representations. Furthermore, as each view often has varying importance w.r.t. different nodes, we propose MANE , an attention -based extension of MANE, to model node-wise view importance. Finally, we conduct comprehensive experiments on three public, real-world multi-view networks, and the results demonstrate that our models consistently outperform state-of-the-art approaches.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Wei Zhuo ◽  
Qianyi Zhan ◽  
Yuan Liu ◽  
Zhenping Xie ◽  
Jing Lu

Network embedding (NE), which maps nodes into a low-dimensional latent Euclidean space to represent effective features of each node in the network, has obtained considerable attention in recent years. Many popular NE methods, such as DeepWalk, Node2vec, and LINE, are capable of handling homogeneous networks. However, nodes are always fully accompanied by heterogeneous information (e.g., text descriptions, node properties, and hashtags) in the real-world network, which remains a great challenge to jointly project the topological structure and different types of information into the fixed-dimensional embedding space due to heterogeneity. Besides, in the unweighted network, how to quantify the strength of edges (tightness of connections between nodes) accurately is also a difficulty faced by existing methods. To bridge the gap, in this paper, we propose CAHNE (context attention heterogeneous network embedding), a novel network embedding method, to accurately determine the learning result. Specifically, we propose the concept of node importance to measure the strength of edges, which can better preserve the context relations of a node in unweighted networks. Moreover, text information is a widely ubiquitous feature in real-world networks, e.g., online social networks and citation networks. On account of the sophisticated interactions between the network structure and text features of nodes, CAHNE learns context embeddings for nodes by introducing the context node sequence, and the attention mechanism is also integrated into our model to better reflect the impact of context nodes on the current node. To corroborate the efficacy of CAHNE, we apply our method and various baseline methods on several real-world datasets. The experimental results show that CAHNE achieves higher quality compared to a number of state-of-the-art network embedding methods on the tasks of network reconstruction, link prediction, node classification, and visualization.


2019 ◽  
Vol 30 (07) ◽  
pp. 1940005
Author(s):  
Longjie Li ◽  
Lu Wang ◽  
Shenshen Bai ◽  
Shiyu Fang ◽  
Jianjun Cheng ◽  
...  

Node similarity measure is a special important task in complex network analysis and plays a critical role in a multitude of applications, such as link prediction, community detection, and recommender systems. In this study, we are interested in link-based similarity measures, which only concern the structural information of networks when estimating node similarity. A new algorithm is proposed by adopting the idea of kernel spectral method to quantify the similarity of nodes. When computing the kernel matrix, the proposed algorithm makes use of local structural information, but it takes advantage of global information when constructing the feature matrix. Thence, the proposed algorithm could better capture potential relationships between nodes. To show the superiority of our algorithm over others, we conduct experiments on 10 real-world networks. Experimental results demonstrate that our algorithm yields more reasonable results and better performance of accuracy than baselines.


Sign in / Sign up

Export Citation Format

Share Document