CELLULAR-AUTOMATON-CONTROLLED LOGISTIC MAP: AN UNUSUAL TYPE OF NOISE

1992 ◽  
Vol 03 (03) ◽  
pp. 547-552
Author(s):  
DANIEL A. STARIOLO ◽  
CONSTANTINO TSALLIS

We present a numerical study of the logistic map dynamics with time dependent parameter values whose evolution is in turn governed by a deterministic cellular automaton. We find an unusual type of noise which presents a surprising internal structure yielding a multiple band attractor.

2020 ◽  
Author(s):  
Saptarshi Bej ◽  
Olaf Wolkenhauer

During the SARS-CoV-2 pandemic, numerous mathematical models have been developed. Reporting artefacts and missing data about asymptomatic spreaders, imply considerable margins of uncertainty for model-based predictions. Epidemiological models can however also be used to investigate the consequences of measures to control the pandemic, reflected in changes to parameter values. We present a SIR-based, SUIR model in which the influence of testing and a reduction of contacts is studied by distinguishing 'Unidentified' and 'Identified' spreaders of infections. The model uses four ordinary differential equations and is kept deliberately simple to investigate general patterns occurring from testing and contact restrictions. The model goes beyond other efforts, by introducing time dependent parameter curves that represent different strategies in controlling the pandemic. Our analysis reveals the effect of 'pro-active' testing for the design of contact restriction measures. By pro-active testing we mean testing beyond those people who show symptoms. The simulations can explain why the timing of contract restrictions and pro-active testing is important. The model can also be used to study the consequence of different strategies to exit from lockdown. Our SUIR model is implemented in Python and is made available through a Juypter Notebooks. This an extensive documentation of the derivation and implementation of the model, as well as transparent and reproducible simulation studies. Our model should contribute to a better understanding of the role of testing and contact restrictions.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350072 ◽  
Author(s):  
PAU RABASSA ◽  
ÀNGEL JORBA ◽  
JOAN CARLES TATJER

We explore different two-parametric families of quasi-periodically Forced Logistic Maps looking for universality and self-similarity properties. In the bifurcation diagram of the one-dimensional Logistic Map, it is well known that there exist parameter values sn where the 2n-periodic orbit is superattracting. Moreover, these parameter values lay between the parameters corresponding to two consecutive period doublings. In the quasi-periodically Forced Logistic Maps, these points are replaced by invariant curves, that undergo a (finite) sequence of period doublings. In this work, we study numerically the presence of self-similarities in the bifurcation diagram of the invariant curves of these quasi-periodically Forced Logistic Maps. Our computations show a remarkable self-similarity for some of these families. We also show that this self-similarity cannot be extended to any quasi-periodic perturbation of the Logistic map.


1963 ◽  
Vol 59 (1) ◽  
pp. 117-124 ◽  
Author(s):  
A. Wragg

AbstractThe time-dependent solutions of an infinite set of differential-difference equations arising from queueing theory and models of ‘living’ polymer are expressed in terms of modified Bessel functions. Explicit solutions are available for constant values of a parameter describing the arrival rate or monomer concentration; for time-dependent parameter a formal solution is obtained in terms of a function which satisfies a Volterra type integral equation of the second kind. These results are used as the basis of a numerical method of solving the infinite set of differential equations when the time-dependent parameter itself satisfies a differential equation.


Materials ◽  
2017 ◽  
Vol 10 (9) ◽  
pp. 1067 ◽  
Author(s):  
Matthias Neuner ◽  
Tobias Cordes ◽  
Martin Drexel ◽  
Günter Hofstetter

2018 ◽  
Vol 191 ◽  
pp. 08004
Author(s):  
A.D. Dolgov ◽  
S.I. Godunov ◽  
A.S. Rudenko

We study the evolution of thick domain walls in the expanding universe. We have found that the domain wall evolution crucially depends on the time-dependent parameter C(t) = 1/(H(t)δ0)2, where H(t) is the Hubble parameter and δ0 is the width of the wall in flat space-time. For C(t) > 2 the physical width of the wall, a(t)δ(t), tends with time to constant value δ0, which is microscopically small. Otherwise, when C(t) ≤ 2, the wall steadily expands and can grow up to a cosmologically large size.


2017 ◽  
Vol 28 (08) ◽  
pp. 1750104 ◽  
Author(s):  
Youssef Khmou

This short paper is focused on the bifurcation theory found in map functions called evolution functions that are used in dynamical systems. The most well-known example of discrete iterative function is the logistic map that puts into evidence bifurcation and chaotic behavior of the topology of the logistic function. We propose a new iterative function based on Lorentizan function and its generalized versions, based on numerical study, it is found that the bifurcation of the Lorentzian function is of second-order where it is characterized by the absence of chaotic region.


1996 ◽  
Vol 06 (04) ◽  
pp. 725-735 ◽  
Author(s):  
ALEXANDER Yu. LOSKUTOV ◽  
VALERY M. TERESHKO ◽  
KONSTANTIN A. VASILIEV

We consider one-dimensional maps, the logistic map and an exponential map, in those sets of parameter values which correspond to their chaotic dynamics. It is proven that such dynamics may be stabilized by a certain cyclic parametric transformation operating strictly within the chaotic set. The stabilization is a result of the creation of stable periodic orbits in the initially chaotic maps. The period of these stable orbits is a multiple of the period of the cyclic transformation. It is shown that stabilized behavior cannot be destroyed by a weak noise smearing of the required parameter values. The regions where the behavior stabilization takes place are numerically estimated. Periods of the created stabile periodic orbits are calculated.


Open Physics ◽  
2013 ◽  
Vol 11 (4) ◽  
Author(s):  
Dragutin Mihailović ◽  
Igor Balaž ◽  
Ilija Arsenić

AbstractIn this paper we numerically investigate a model of a diffusively coupled ring of cells. To model the dynamics of individual cells we propose a map with cell affinity, which is a generalization of the logistic map. First, the basic features of a one-cell system are studied in terms of the Lyapunov exponent, Kolmogorov complexity and Sample Entropy. Second, the notion of observational heterarchy, which is a perpetual negotiation process between different levels of the description of a phenomenon, is reviewed. After these preliminaries, we study how the active coupling induced by the consideration of the observational heterarchy modifies the synchronization property of the model with N=100 cells. It is shown numerically that the active coupling enhances synchronization of biochemical substance exchange in several different conditions of cell affinity.


Sign in / Sign up

Export Citation Format

Share Document