scholarly journals ENHANCEMENT OF FLOW ANISOTROPIES DUE TO MAGNETIC FIELD IN RELATIVISTIC HEAVY-ION COLLISIONS

2011 ◽  
Vol 26 (33) ◽  
pp. 2477-2486 ◽  
Author(s):  
RANJITA K. MOHAPATRA ◽  
P. S. SAUMIA ◽  
AJIT M. SRIVASTAVA

It is known that the presence of background magnetic field in cosmic plasma distorts the acoustic peaks in CMBR. This primarily results from different types of waves in the plasma with velocities depending on the angle between the magnetic field and the wave vector. We consider the consequences of these effects in relativistic heavy-ion collisions where very strong magnetic fields arise during early stages of the plasma evolution. We show that flow coefficients can be significantly affected by these effects when the magnetic field remains strong during early stages due to strong induced fields in the conducting plasma. In particular, the presence of magnetic field can lead to enhancement in the elliptic flow coefficient v2.

2016 ◽  
Vol 117 ◽  
pp. 03014 ◽  
Author(s):  
M. Ruggieri ◽  
A. Puglisi ◽  
L. Oliva ◽  
S. Plumari ◽  
F. Scardina ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Zhong ◽  
Chun-Bin Yang ◽  
Xu Cai ◽  
Sheng-Qin Feng

The features of magnetic field in relativistic heavy-ion collisions are systematically studied by using a modified magnetic field model in this paper. The features of magnetic field distributions in the central point are studied in the RHIC and LHC energy regions. We also predict the feature of magnetic fields at LHCsNN=900, 2760, and 7000 GeV based on the detailed study at RHICsNN=62.4, 130, and 200 GeV. The dependencies of the features of magnetic fields on the collision energies, centralities, and collision time are systematically investigated, respectively.


2017 ◽  
Vol 96 (3) ◽  
Author(s):  
Arpan Das ◽  
Shreyansh S. Dave ◽  
P. S. Saumia ◽  
Ajit M. Srivastava

2017 ◽  
Vol 289-290 ◽  
pp. 205-208
Author(s):  
M. Ruggieri ◽  
L. Oliva ◽  
S. Plumari ◽  
F. Scardina ◽  
G.X. Peng ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-34 ◽  
Author(s):  
Kirill Tuchin

I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2at RHIC and ~10mπ2at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidateJ/ψdissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude thatallprocesses in QGP are affected by strong electromagnetic field and call for experimental investigation.


Sign in / Sign up

Export Citation Format

Share Document