scholarly journals Superalgebraic Truncations from D=10, N=2 Chiral Supergravity

1997 ◽  
Vol 12 (12) ◽  
pp. 851-859 ◽  
Author(s):  
Chang-Ho Kim ◽  
Young-Jai Park

We study 10-dimensional N=2 maximal chiral supergravity in the context of Lie superalgebra SU(8/1). The possible successive superalgebraic truncations from 10-dimensional N=2 chiral theory to the lower-dimensional supergravity theories are systematically realized as sub-superalgebraic chains of SU(8/1) by using the Kac–Dynkin weight techniques.

Author(s):  
Mark Wilson

Scientists have developed various collections of specialized possibilities to serve as search spaces in which excessive reliance upon speculative forms of lower dimensional modeling or other unwanted details can be skirted. Two primary examples are discussed: the search spaces of machine design and the virtual variations utilized within Lagrangian mechanics. Contemporary appeals to “possible worlds” attempt to imbed these localized possibilities within fully enunciated universes. But not all possibilities are made alike and these reductive schemes should be resisted, on the grounds that they render the utilities of everyday counterfactuals and “possibility” talk incomprehensible. The essay also discusses whether Wittgenstein’s altered views in his Philosophical Investigations reflect similar concerns.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Marius de Leeuw ◽  
Chiara Paletta ◽  
Anton Pribytok ◽  
Ana L. Retore ◽  
Alessandro Torrielli

Abstract In this paper we first demonstrate explicitly that the new models of integrable nearest-neighbour Hamiltonians recently introduced in PRL 125 (2020) 031604 [36] satisfy the so-called free fermion condition. This both implies that all these models are amenable to reformulations as free fermion theories, and establishes the universality of this condition. We explicitly recast the transfer matrix in free fermion form for arbitrary number of sites in the 6-vertex sector, and on two sites in the 8-vertex sector, using a Bogoliubov transformation. We then put this observation to use in lower-dimensional instances of AdS/CFT integrable R-matrices, specifically pure Ramond-Ramond massless and massive AdS3, mixed-flux relativistic AdS3 and massless AdS2. We also attack the class of models akin to AdS5 with our free fermion machinery. In all cases we use the free fermion realisation to greatly simplify and reinterpret a wealth of known results, and to provide a very suggestive reformulation of the spectral problem in all these situations.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Carlos Daniel Tamayo-Castro ◽  
Ricardo Abreu-Blaya ◽  
Juan Bory-Reyes

Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


2021 ◽  
Author(s):  
Wen-Yu Yin ◽  
Yi-Gang Weng ◽  
Zhou-Hong Ren ◽  
Zhi-Ruo Zhang ◽  
Qin-Yu Zhu ◽  
...  

Introducing electronically active organic components into lower dimensional metal-halide compounds is an effective strategy to improve electronic properties of hybrid metal halide materials. We have previously used this strategy to...


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 957
Author(s):  
Branislav Popović ◽  
Lenka Cepova ◽  
Robert Cep ◽  
Marko Janev ◽  
Lidija Krstanović

In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Matteo Focardi ◽  
Emanuele Spadaro

AbstractBuilding upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle problem in {\mathbb{R}^{n+1}} with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null {{\mathcal{H}}^{n-1}} measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] and therefore we retrieve the same results:(i)local finiteness of the {(n-1)}-dimensional Minkowski content of the free boundary (and thus of its Hausdorff measure),(ii){{\mathcal{H}}^{n-1}}-rectifiability of the free boundary,(iii)classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most {(n-2)} in the free boundary.Instead, if {\varphi\in C^{k+1}(\mathbb{R}^{n})}, {k\geq 2}, similar results hold only for distinguished subsets of points in the free boundary where the order of contact of the solution with the obstacle function φ is less than {k+1}.


Sign in / Sign up

Export Citation Format

Share Document