scholarly journals MONOPOLES NEAR THE PLANCK SCALE AND UNIFICATION

2003 ◽  
Vol 18 (24) ◽  
pp. 4403-4441 ◽  
Author(s):  
L. V. LAPERASHVILI ◽  
D. A. RYZHIKH ◽  
H. B. NIELSEN

Considering our (3+1)-dimensional space–time as, in some way, discrete or lattice with a parameter a = λP, where λP is the Planck length, we have investigated the additional contributions of lattice artifact monopoles to beta functions of the renormalization group equations for the running fine structure constants αi(μ) (i = 1,2,3 correspond to the U(1), SU(2) and SU(3) gauge groups of the Standard Model) in the Family Replicated Gauge Group Model (FRGGM) which is an extension of the Standard Model at high energies. It was shown that monopoles have N fam times smaller magnetic charge in FRGGM than in SM (N fam is the number of families in FRGGM). We have estimated also the enlargement of a number of fermions in FRGGM leading to the suppression of the asymptotic freedom in the non-Abelian theory. We have shown that, in contrast to the case of anti-GUT when the FRGGM undergoes the breakdown at μ = μG ~ 1018 GeV , we have the possibility of unification if the FRGGM-breakdown occurs at μG ~ 1014 GeV . By numerical calculations we obtained an example of the unification of all gauge interactions (including gravity) at the scale μ GUT ≈ 1018.4 GeV . We discussed the possibility of [ SU (5)]3 or [ SO (10)]3 (SUSY or not SUSY) unifications.

1988 ◽  
Vol 03 (16) ◽  
pp. 1603-1617
Author(s):  
MITSUHIRO KATO ◽  
TAKAO KOIKAWA ◽  
MACHIKO TATEWAKI HATSUDA

The answer to the title is ‘NO’. We investigate the low energy particle spectra of type-II superstring theory after compactification to 4 dimensional space-time by means of the super Kac-Moody algebra as well as the twisted super Kac-Moody algebra. We will show that there is no solution containing all of the particle contents in the standard model.


2013 ◽  
Vol 28 (14) ◽  
pp. 1350055 ◽  
Author(s):  
YOSHIHARU KAWAMURA ◽  
TAKASHI MIURA

We classify the standard model fermions, which originate from bulk fields of the 27 or [Formula: see text] representation after orbifold breaking, in E6 grand unified theories on five- or six-dimensional space–time, under the condition that q, ec and uc survive as zero modes for each 27 or [Formula: see text]. We study features of supersymmetric SU(5) ×U(1)1 ×U(1)2 model.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


2019 ◽  
Vol 34 (05) ◽  
pp. 1950029 ◽  
Author(s):  
Coraline Stasser ◽  
Michaël Sarrazin

Many-brane Universes are at the heart of several cosmological scenarios related to physics beyond the Standard Model. It is then a major concern to constrain these approaches. Two-brane Universes involving [Formula: see text]-broken 5D bulks are among the cosmological models of interest. They also allow considering matter exchange between branes, a possible way to test these scenarios. Neutron disappearance (reappearance) toward (from) the hidden brane is currently tested with high-precision experiments to constrain the coupling constant [Formula: see text] between the visible and hidden neutron sectors. When dealing with the sub-GeV-scale quantum dynamics of fermions, any pair of braneworlds can be described by a noncommutative two-sheeted space–time [Formula: see text] from which [Formula: see text] emerges. Nevertheless, the calculation of the formal link between [Formula: see text] for a neutron and [Formula: see text]-broken 5D bulks remains an open problem until now although necessary to constrain these braneworld scenarios. Thanks to a phenomenological model, we derive [Formula: see text] — for a neutron — between the two braneworlds endowed with their own copy of the Standard Model in an [Formula: see text]-broken 5D bulk. Constraints on interbrane distance and brane energy scale (or brane thickness) are discussed. While brane energy scale below the GUT scale is excluded, energy scale up to the Planck limit allows neutron swapping detection in forthcoming experiments.


2003 ◽  
Vol 18 (14) ◽  
pp. 967-975 ◽  
Author(s):  
J. G. KÖRNER ◽  
CHUN LIU

A supersymmetric model with two copies of the Standard Model gauge groups is constructed in the gauge mediated supersymmetry breaking scenario. The supersymmetry breaking messengers are in a simple form. The Standard Model is obtained after first step gauge symmetry breaking. In the case of one copy of the gauge interactions being strong, a scenario of electroweak symmetry breaking is discussed, and the gauginos are generally predicted to be heavier than the sfermions.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Li ◽  
En-Lei Wang ◽  
Hong-Yan Zhang

Within the QCD factorization framework, we investigate the branching fractions and the directCPasymmetries of decaysB→K0*1430ρωandB→K0*1430ϕunder two different scenarios in the standard model and the family nonuniversalZ′model. We find that the annihilation terms play crucial roles in these decays and lead to the major uncertainties. For decaysB-→K0*-1430ρ0ω, the newZ′boson could change the branching fractions remarkably. However, for other decays, its contribution might be clouded by large uncertainties from annihilations. Unfortunately, neither the standard model nor theZ′model can reproduce all experimental data simultaneously under one certain scenario. We also noted that the directCPasymmetries ofB-→K0*-1430ρ0ωcould be used to identify theK0*1430meson and search for the contribution of newZ′boson.


Author(s):  
Piyi Yang ◽  
Tanveer A Zia

A set of attributes instead of a single string to represent the signer’s identity is a challenging problem under standard cryptographic assumption in the standard model. Therefore, designing a fully secure (adaptive-predicate unforgeable and perfectly private) Attribute-Based Signature (ABS) that allows a signer to choose a set of attributes is vital. Existing schemes are either too complicated or have only been proved in the generic group model. In this chapter, the authors present an efficient fully secure ABS scheme in the standard model based on q-parallel BDHE assumption, which is more practical than the generic group model used in the previous schemes. The proposed scheme is highly expressive since it allows any signer to specify claim-predicates in terms of any predicate consisting of AND, OR, and Threshold gates over the attributes in the system. ABS has found many important applications in secure communications, such as anonymous authentication systems and attribute-based messaging systems.


Sign in / Sign up

Export Citation Format

Share Document