Lattice QCD Results and Prospects

2003 ◽  
Vol 18 (supp01) ◽  
pp. 1-26
Author(s):  
Richard Kenway

In the Standard Model, quarks and gluons are permanently confined by the strong interaction into hadronic bound states. The values of the quark masses and the strengths of the decays of one quark flavour into another cannot be measured directly, but must be deduced from experiments on hadrons. This requires calculations of the strong-interaction effects within the bound states, which are only possible using numerical simulations of lattice QCD. These are computationally intensive and, for the past twenty years, have exploited leading-edge computing technology. In conjunction with experimental data from B Factories, over the next few years, lattice QCD may provide clues to physics beyond the Standard Model. These lectures provide a non-technical introduction to lattice QCD, some of the recent results, QCD computers, and the future prospects.

2018 ◽  
Vol 175 ◽  
pp. 13027 ◽  
Author(s):  
Bipasha Chakraborty ◽  
Christine Davies ◽  
Jonna Koponen ◽  
G Peter Lepage

he quark flavor sector of the Standard Model is a fertile ground to look for new physics effects through a unitarity test of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. We present a lattice QCD calculation of the scalar and the vector form factors (over a large q2 region including q2 = 0) associated with the D→ Klv semi-leptonic decay. This calculation will then allow us to determine the central CKM matrix element, Vcs in the Standard Model, by comparing the lattice QCD results for the form factors and the experimental decay rate. This form factor calculation has been performed on the Nf = 2 + 1 + 1 MILC HISQ ensembles with the physical light quark masses.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Vincenzo Cirigliano ◽  
Emanuele Mereghetti ◽  
Peter Stoffer

Abstract We define a regularization-independent momentum-subtraction scheme for the C P -odd three-gluon operator at dimension six. This operator appears in effective field theories for heavy physics beyond the Standard Model, describing the indirect effect of new sources of C P-violation at low energies. In a hadronic context, it induces permanent electric dipole moments. The hadronic matrix elements of the three-gluon operator are non-perturbative objects that should ideally be evaluated with lattice QCD. We define a non-perturbative renormalization scheme that can be implemented on the lattice and we compute the scheme transformation to $$ \overline{\mathrm{MS}} $$ MS ¯ at one loop. Our calculation can be used as an interface to future lattice-QCD calculations of the matrix elements of the three-gluon operator, in order to obtain theoretically robust constraints on physics beyond the Standard Model from measurements of the neutron electric dipole moment.


2014 ◽  
Vol 31 ◽  
pp. 1460282
Author(s):  
Chuan Liu

Recent Lattice QCD results are reviewed with an emphasis on spectroscopic results concerning the charm quark. It is demonstrated that, with accurate computations from lattice QCD in recent years that can be compared with the existing or upcoming experiments, stringent test of the Standard Model can be performed which will greatly sharpen our knowledge on the strong interaction.


2018 ◽  
Vol 175 ◽  
pp. 13010 ◽  
Author(s):  
Peter Boyle ◽  
Nicolas Garron ◽  
Julia Kettle ◽  
Ava Khamseh ◽  
Justus Tobias Tsang

We present a progress update on the RBC-UKQCD calculation of beyond the standard model (BSM) kaon mixing matrix elements at the physical point. Simulations are performed using 2+1 flavour domain wall lattice QCD with the Iwasaki gauge action at 3 lattice spacings and with pion masses ranging from 430 MeV to the physical pion mass.


2014 ◽  
Vol 29 (26) ◽  
pp. 1430060
Author(s):  
Chuan Liu

Recent lattice QCD results are reviewed with an emphasis on spectroscopic results concerning the charm quark. It is demonstrated that, with accurate computations from lattice QCD in recent years that can be compared with the existing or upcoming experiments, stringent test of the Standard Model can be performed which will greatly sharpen our knowledge on the strong interaction.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


Sign in / Sign up

Export Citation Format

Share Document