GAMMA RAYS STUDIES BASED ON ATMOSPHERIC CHERENKOV TECHNIQUE AT HIGH MOUNTAIN ALTITUDE

2005 ◽  
Vol 20 (29) ◽  
pp. 7016-7019 ◽  
Author(s):  
A. MISHEV ◽  
S. MAVRODIEV ◽  
J. STAMENOV

We present a new method for ground based gamma ray astronomy based only on atmospheric Cherenkov light flux analysis. The Cherenkov light flux densities in extensive air showers initiated by different primaries are simulated in the energy range 100 GeV – 100 PeV for different primaries using the CORSIKA 6.003 code at (536 g/cm2). An approximation of lateral distribution of Cherenkov light flux densities in EAS is obtained using a nonlinear fit such as Breit-Wigner. The simulated and reconstructed events are compared and the accuracy in energy and primary mass reconstruction are obtained.

1993 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
R.W. Clay ◽  
B.R. DawSOn

AbstractGround-based gamma-ray astronomy has slowly developed over the past quarter of a century to a position now where a number of sources are known to produce gamma-rays in the energy range 1011eV to 1018eV. The observations are difficult, with exceptional signal to noise problems, but improved techniques are now allowing observers to proceed with confidence. In this paper the physical bases of the observations are emphasised to show the important issues in the field and the present state of the observations is indicated.


2015 ◽  
Vol 754-755 ◽  
pp. 807-811
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

The simulation of Cherenkov light Lateral distribution function (LDF) in Extensive Air Showers (EAS) initiated primary particles such as primary calcium, argon, proton iron nuclei, neutron and nitrogen have been performed using CORSIKA program for conditions and configurations of Tunka133 EAS Cherenkov array. The simulation was fulfilled at the high energy range 1014-1016eV for four different zenith angles 0o, 10o, 15oand 30o. The results of the simulated Cherenkov light LDF are compared with the measurements of Tunka133 EAS array for the same particles and energy range mentioned above. This comparison may give the good ability to reconstruct the energy spectrum and mass composition of the primary cosmic ray particles in EAS. The main feature of the given approach consists of the possibility to make a library of Cherenkov light LDF samples which could be utilized for analysis of real events which can be detected with different EAS arrays and reconstruction of the primary cosmic rays energy spectrum and mass composition of EAS particles.


2018 ◽  
Vol 63 (11) ◽  
pp. 1603-1614 ◽  
Author(s):  
E. E. Kholupenko ◽  
A. M. Bykov ◽  
F. A. Aharonyan ◽  
G. I. Vasiliev ◽  
A. M. Krassilchtchikov ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


1982 ◽  
Vol 199 (3) ◽  
pp. 585-596 ◽  
Author(s):  
J.M. Lavigne ◽  
M. Niel ◽  
G. Vedrenne ◽  
C. Doulade ◽  
G. Giordano ◽  
...  

2017 ◽  
Author(s):  
David Sarria ◽  
Francois Lebrun ◽  
Pierre-Louis Blelly ◽  
Remi Chipaux ◽  
Philippe Laurent ◽  
...  

Abstract. With a launch expected in 2018, the TARANIS micro-satellite is dedicated to the study of transient phenomena observed in association with thunderstorms. On-board the spacecraft, XGRE and IDEE are two instruments dedicated to study Terrestrial Gamma-ray Flashes (TGFs) and associated electron beams (TEBs). XGRE can detect electrons (energy range: 1 MeV to 10 MeV) and X/gamma-rays (energy range: 20 keV to 10 MeV), with a very high counting capability (about 10 million counts per second), and the ability to discriminate one type of particle from the other. The IDEE instrument is focused on electrons in the 80 keV to 4 MeV energy range, with the ability to estimate their pitch angles. Monte-Carlo simulations of the TARANIS instruments, using a preliminary model of the spacecraft, allow sensitive area estimates for both instruments. It leads to an averaged effective area of 425 cm2 for XGRE to detect X/gamma rays from TGFs, and the combination of XGRE and IDEE gives an average effective area of 255 cm2 to detect electrons/positrons from TEBs. We then compare these performances to RHESSI, AGILE, and Fermi GBM, using performances extracted from literature for the TGF case, and with the help of Monte-Carlo simulations of their mass models for the TEB case. Combining these data with with the help of the MC-PEPTITA Monte-Carlo simulations of TGF propagation in the atmosphere, we build a self-consistent model of the TGF and TEB detection rates of RHESSI, AGILE, and Fermi. It can then be used to estimate that TARANIS should detect about 225 TGFs/year and 25 TEBs/year.


Sign in / Sign up

Export Citation Format

Share Document