scholarly journals DARK MATTER AXIONS

2010 ◽  
Vol 25 (02n03) ◽  
pp. 554-563 ◽  
Author(s):  
P. SIKIVIE

The hypothesis of an 'invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order 10-5 eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 402
Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progress of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the cosmological constant, we propose explaining dark matter as a pure QCD effect, namely a gluonic Bose–Einstein condensate, following the transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach not only allows us to assume a Dark/Visible ratio equal to 11/2 but also provides gluons (and di-gluons, viewed as quasi-particles) with an extra mass of vibrational nature. Such an interpretation would support the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology needs not the recourse to any ad hoc fields, particles or hidden variables.


2014 ◽  
Vol 89 (6) ◽  
Author(s):  
F. S. Guzmán ◽  
F. D. Lora-Clavijo ◽  
J. J. González-Avilés ◽  
F. J. Rivera-Paleo

Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progresses of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the cosmological constant, we propose to explain dark matter as a pure QCD effect, namely a gluon Bose Einstein condensate, following the transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach not only allows us to assume a ratio Dark/Visible equal to 11/2 but also provides gluons and (anti-)quarks with an extra mass of vibrational nature. Such an interpretation would comfort the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology needs not the recourse to any ad hoc fields, particles or hidden variables.


Author(s):  
Tiberiu Harko

Abstract We consider the Jeans instability and the gravitational collapse of the rotating Bose–Einstein condensate dark matter halos, described by the zero temperature non-relativistic Gross–Pitaevskii equation, with repulsive interparticle interactions. In the Madelung representation of the wave function, the dynamical evolution of the galactic halos is described by the continuity and the hydrodynamic Euler equations, with the condensed dark matter satisfying a polytropic equation of state with index $$n=1$$n=1. By considering small perturbations of the quantum hydrodynamical equations we obtain the dispersion relation and the Jeans wave number, which includes the effects of the vortices (turbulence), of the quantum pressure and of the quantum potential, respectively. The critical scales above which condensate dark matter collapses (the Jeans radius and mass) are discussed in detail. We also investigate the collapse/expansion of rotating condensed dark matter halos, and we find a family of exact semi-analytical solutions of the hydrodynamic evolution equations, derived by using the method of separation of variables. An approximate first order solution of the fluid flow equations is also obtained. The radial coordinate dependent mass, density and velocity profiles of the collapsing/expanding condensate dark matter halos are obtained by using numerical methods.


Sign in / Sign up

Export Citation Format

Share Document