Journal of Cosmology and Astroparticle Physics
Latest Publications


TOTAL DOCUMENTS

9202
(FIVE YEARS 2193)

H-INDEX

150
(FIVE YEARS 28)

Published By Iop Publishing

1475-7516, 1475-7508

2022 ◽  
Vol 2022 (01) ◽  
pp. 022
Author(s):  
Nina K. Stein ◽  
William H. Kinney

Abstract We calculate high-precision constraints on Natural Inflation relative to current observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on r and n S, including post-inflationary history of the universe. We find that, for conventional post-inflationary dynamics, Natural Inflation with a cosine potential is disfavored at greater than 95% confidence out by current data. If we assume protracted reheating characterized by w̅>1/3, Natural Inflation can be brought into agreement with current observational constraints. However, bringing unmodified Natural Inflation into the 68% confidence region requires values of T re below the scale of electroweak symmetry breaking. The addition of a SHOES prior on the Hubble Constant H 0 only worsens the fit.


2022 ◽  
Vol 2022 (01) ◽  
pp. 018
Author(s):  
M. Berti ◽  
M. Spinelli ◽  
B.S. Haridasu ◽  
M. Viel ◽  
A. Silvestri

Abstract We explore constraints on dark energy and modified gravity with forecasted 21cm intensity mapping measurements using the Effective Field Theory approach. We construct a realistic mock data set forecasting a low redshift 21cm signal power spectrum P 21(z,k) measurement from the MeerKAT radio-telescope. We compute constraints on cosmological and model parameters through Monte-Carlo Markov-Chain techniques, testing both the constraining power of P 21(k) alone and its effect when combined with the latest Planck 2018 CMB data. We complement our analysis by testing the effects of tomography from an ideal mock data set of observations in multiple redshift bins. We conduct our analysis numerically with the codes EFTCAMB/EFTCosmoMC, which we extend by implementing a likelihood module fully integrated with the original codes. We find that adding P 21(k) to CMB data provides significantly tighter constraints on Ωc h 2 and H 0, with a reduction of the error with respect to Planck results at the level of more than 60%. For the parameters describing beyond ΛCDM theories, we observe a reduction in the error with respect to the Planck constraints at the level of ≲ 10%. The improvement increases up to ∼ 35% when we constrain the parameters using ideal, tomographic mock observations. We conclude that the power spectrum of the 21cm signal is sensitive to variations of the parameters describing the examined beyond ΛCDM models and, thus, P 21(k) observations could help to constrain dark energy. The constraining power on such theories is improved significantly by tomography.


2022 ◽  
Vol 2022 (01) ◽  
pp. 012
Author(s):  
Ki-Young Choi ◽  
Jinn-Ouk Gong ◽  
Su-beom Kang ◽  
Rathul Nath Raveendran

Abstract We suggest a new method to reconstruct, within canonical single-field inflation, the inflaton potential directly from the primordial power spectrum which may deviate significantly from near scale-invariance. Our approach relies on a more generalized slow-roll approximation than the standard one, and can probe the properties of the inflaton potential reliably. We give a few examples for reconstructing potential and discuss the validity of our method.


2022 ◽  
Vol 2022 (01) ◽  
pp. 020
Author(s):  
Cristiano G. Sabiu ◽  
Kenji Kadota ◽  
Jacobo Asorey ◽  
Inkyu Park

Abstract We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21 cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on the reionization history due to the suppression of small scale density perturbations in the early universe. This behavior depends strongly on the mass of the axion particle. Using numerical simulations of the brightness temperature field of neutral hydrogen over a large redshift range, we construct a suite of training data. This data is used to train a convolutional neural network that can build a connection between the spatial structures of the brightness temperature field and the input axion mass directly. We construct mock observations of the future Square Kilometer Array survey, SKA1-Low, and find that even in the presence of realistic noise and resolution constraints, the network is still able to predict the input axion mass. We find that the axion mass can be recovered over a wide mass range with a precision of approximately 20%, and as the whole DM contribution, the axion can be detected using SKA1-Low at 68% if the axion mass is M X < 1.86 × 10-20 eV although this can decrease to M X < 5.25 × 10-21 eV if we relax our assumptions on the astrophysical modeling by treating those astrophysical parameters as nuisance parameters.


2022 ◽  
Vol 2022 (01) ◽  
pp. 003
Author(s):  
Edwin A. Delgado ◽  
Hiroshi Nunokawa ◽  
Alexander A. Quiroga

Abstract The observation of Earth matter effects in the spectrum of neutrinos coming from a next galactic core-collapse supernova (CCSN) could, in principle, reveal if neutrino mass ordering is normal or inverted. One of the possible ways to identify the mass ordering is through the observation of the modulations that appear in the spectrum when neutrinos travel through the Earth before they arrive at the detector. These features in the neutrino spectrum depend on two factors, the average neutrino energies, and the difference between the primary neutrino fluxes of electron and other flavors produced inside the supernova. However, recent studies indicate that the Earth matter effect for CCSN neutrinos is expected to be rather small and difficult to be observed by currently operating or planned neutrino detectors mainly because of the similarity of average energies and fluxes between electron and other flavors of neutrinos, unless the distance to CCSN is significantly smaller than the typically expected one, ∼ 10 kpc. Here, we are looking towards the possibility if the non-standard neutrino properties such as decay of neutrinos can enhance the Earth matter effect. In this work we show that invisible neutrino decay can potentially enhance significantly the Earth matter effect for both νe and ν̅e channels at the same time for both mass orderings, even if the neutrino spectra between electron and other flavors of neutrinos are very similar, which is a different feature not expected for CCSN neutrinos with standard oscillation without the decay effect.


2022 ◽  
Vol 2022 (01) ◽  
pp. 004
Author(s):  
Giulio Scelfo ◽  
Marta Spinelli ◽  
Alvise Raccanelli ◽  
Lumen Boco ◽  
Andrea Lapi ◽  
...  

Abstract Two of the most rapidly growing observables in cosmology and astrophysics are gravitational waves (GW) and the neutral hydrogen (HI) distribution. In this work, we investigate the cross-correlation between resolved gravitational wave detections and HI signal from intensity mapping (IM) experiments. By using a tomographic approach with angular power spectra, including all projection effects, we explore possible applications of the combination of the Einstein Telescope and the SKAO intensity mapping surveys. We focus on three main topics: (i) statistical inference of the observed redshift distribution of GWs; (ii) constraints on dynamical dark energy models as an example of cosmological studies; (iii) determination of the nature of the progenitors of merging binary black holes, distinguishing between primordial and astrophysical origin. Our results show that: (i) the GW redshift distribution can be calibrated with good accuracy at low redshifts, without any assumptions on cosmology or astrophysics, potentially providing a way to probe astrophysical and cosmological models; (ii) the constrains on the dynamical dark energy parameters are competitive with IM-only experiments, in a complementary way and potentially with less systematics; (iii) it will be possible to detect a relatively small abundance of primordial black holes within the gravitational waves from resolved mergers. Our results extend towards GW × IM the promising field of multi-tracing cosmology and astrophysics, which has the major advantage of allowing scientific investigations in ways that would not be possible by looking at single observables separately.


2022 ◽  
Vol 2022 (01) ◽  
pp. 005
Author(s):  
Mayumi Aoki ◽  
Jisuke Kubo ◽  
Jinbo Yang

Abstract Dynamical chiral symmetry breaking in a QCD-like hidden sector is used to generate the Planck mass and the electroweak scale including the heavy right-handed neutrino mass. A real scalar field transmits the energy scale of the hidden sector to the visible sectors, playing besides a role of inflaton in the early Universe while realizing a Higgs-inflation-like model. Our dark matter candidates are hidden pions that raise due to dynamical chiral symmetry breaking. They are produced from the decay of inflaton. Unfortunately, it will be impossible to directly detect them, because they are super heavy (109 ∼ 12 GeV), and moreover the interaction with the visible sector is extremely suppressed.


2022 ◽  
Vol 2022 (01) ◽  
pp. 016
Author(s):  
Cristian Gaidau ◽  
Jessie Shelton

Abstract We re-examine the gravitational capture of dark matter (DM) through long-range interactions. We demonstrate that neglecting the thermal motion of target particles, which is often a good approximation for short-range capture, results in parametrically inaccurate results for long-range capture. When the particle mediating the scattering process has a mass that is small in comparison to the momentum transfer in scattering events, correctly incorporating the thermal motion of target particles results in a quadratic, rather than logarithmic, sensitivity to the mediator mass, which substantially enhances the capture rate. We quantitatively assess the impact of this finite temperature effect on the captured DM population in the Sun as a function of mediator mass. We find that capture of DM through light dark photons, as in e.g. mirror DM, can be powerfully enhanced, with self-capture attaining a geometric limit over much of parameter space. For visibly-decaying dark photons, thermal corrections are not large in the Sun, but may be important in understanding long-range DM capture in more massive bodies such as Population III stars. We additionally provide the first calculation of the long-range DM self-evaporation rate.


2022 ◽  
Vol 2022 (01) ◽  
pp. 017
Author(s):  
Adrienne L. Erickcek ◽  
Pranjal Ralegankar ◽  
Jessie Shelton

Abstract The early universe may have contained internally thermalized dark sectors that were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath, composed of the lightest particle in the dark sector, can give rise to an epoch of early matter domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on the smallest dark matter structures. This lightest dark particle can easily and generically have number-changing self-interactions that give rise to “cannibal” behavior. We consider cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the expansion of the universe, and we provide a simple map between the particle properties of the cannibal species and the key features of the enhanced dark matter perturbation growth in such cosmologies. We further demonstrate that cannibal self-interactions can determine the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions freeze out prior to cannibal domination.


2022 ◽  
Vol 2022 (01) ◽  
pp. 019
Author(s):  
Ashutosh Tripathi ◽  
Askar B. Abdikamalov ◽  
Dimitry Ayzenberg ◽  
Cosimo Bambi ◽  
Victoria Grinberg ◽  
...  

Abstract The continuum-fitting and the iron line methods are currently the two leading techniques for probing the strong gravity region around accreting black holes. In the present work, we test the Kerr black hole hypothesis with the stellar-mass black hole in GRS 1915+105 by analyzing five disk-dominated RXTE spectra and one reflection-dominated Suzaku spectrum. The combination of the constraints from the continuum-fitting and the iron line methods has the potential to provide more stringent tests of the Kerr metric. Our constraint on the Johannsen deformation parameter α13 is -0.15 < α13 < 0.14 at 3σ, where the Kerr metric is recovered when α13 = 0.


Sign in / Sign up

Export Citation Format

Share Document