scholarly journals TOPOLOGICALLY MASSIVE NON-ABELIAN THEORY: SUPERFIELD APPROACH

2011 ◽  
Vol 26 (25) ◽  
pp. 4419-4450 ◽  
Author(s):  
S. KRISHNA ◽  
A. SHUKLA ◽  
R. P. MALIK

We apply the well-established techniques of geometrical superfield approach to Becchi–Rouet–Stora–Tyutin (BRST) formalism in the context of four (3+1)-dimensional (4D) dynamical non-Abelian 2-form gauge theory by exploiting its inherent "scalar" and "vector" gauge symmetry transformations and derive the corresponding off-shell nilpotent and absolutely anticommuting BRST and anti-BRST symmetry transformations. Our approach leads to the derivation of three (anti-)BRST invariant Curci–Ferrari (CF)-type restrictions that are found to be responsible for the absolute anticommutativity of the BRST and anti-BRST symmetry transformations. We derive the coupled Lagrangian densities that respect the (anti-)BRST symmetry transformations corresponding to the "vector" gauge transformations. We also capture the (anti-)BRST invariance of the CF-type restrictions and coupled Lagrangian densities within the framework of our superfield approach. We obtain, furthermore, the off-shell nilpotent (anti-)BRST symmetry transformations when the (anti-)BRST symmetry transformations corresponding to the "scalar" and "vector" gauge symmetries are merged together. These off-shell nilpotent "merged" (anti-)BRST symmetry transformations are, however, found to be non-anticommuting in nature.

2017 ◽  
Vol 32 (22) ◽  
pp. 1750136 ◽  
Author(s):  
N. Srinivas ◽  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

Within the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism, we discuss some novel features of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci–Ferrari (CF-)type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities (where we get rid of the new CF-type restrictions) respect some precise symmetries as well as a couple of symmetries with CF-type constraints. These observations are completely novel as far as the BRST formalism, with proper (anti-)co-BRST symmetries, is concerned.


2014 ◽  
Vol 92 (9) ◽  
pp. 1033-1042 ◽  
Author(s):  
S. Gupta ◽  
R. Kumar ◽  
R.P. Malik

In the available literature, only the Becchi–Rouet–Stora–Tyutin (BRST) symmetries are known for the Jackiw–Pi model of the three (2 + 1)-dimensional (3D) massive non-Abelian gauge theory. We derive the off-shell nilpotent [Formula: see text] and absolutely anticommuting (sbsab + sabsb = 0) (anti-)BRST transformations s(a)b corresponding to the usual Yang–Mills gauge transformations of this model by exploiting the “augmented” superfield formalism where the horizontality condition and gauge invariant restrictions blend together in a meaningful manner. There is a non-Yang–Mills (NYM) symmetry in this theory, too. However, we do not touch the NYM symmetry in our present endeavor. This superfield formalism leads to the derivation of an (anti-)BRST invariant Curci–Ferrari restriction, which plays a key role in the proof of absolute anticommutativity of s(a)b. The derivation of the proper anti-BRST symmetry transformations is important from the point of view of geometrical objects called gerbes. A novel feature of our present investigation is the derivation of the (anti-)BRST transformations for the auxiliary field ρ from our superfield formalism, which is neither generated by the (anti-)BRST charges nor obtained from the requirements of nilpotency and (or) absolute anticommutativity of the (anti-)BRST symmetries for our present 3D non-Abelian 1-form gauge theory.


Author(s):  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

We discuss the nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations and derive their corresponding conserved charges in the case of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) self-interacting non-Abelian gauge theory (without any interaction with matter fields). We point out a set of novel features that emerge out in the BRST and co-BRST analysis of the above 2D gauge theory. The algebraic structures of the symmetry operators (and corresponding conserved charges) and their relationship with the cohomological operators of differential geometry are established too. To be more precise, we demonstrate the existence of a single Lagrangian density that respects the continuous symmetries which obey proper algebraic structure of the cohomological operators of differential geometry. In the literature, such observations have been made for the coupled (but equivalent) Lagrangian densities of the 4D non-Abelian gauge theory. We lay emphasis on the existence and properties of the Curci–Ferrari (CF)-type restrictions in the context of (anti-)BRST and (anti-)co-BRST symmetry transformations and pinpoint their key differences and similarities. All the observations, connected with the (anti-)co-BRST symmetries, are completely novel.


2018 ◽  
Vol 33 (04) ◽  
pp. 1850026 ◽  
Author(s):  
B. Chauhan ◽  
S. Kumar ◽  
R. P. Malik

We derive the off-shell nilpotent (fermionic) (anti-)BRST symmetry transformations by exploiting the (anti-)chiral superfield approach (ACSA) to Becchi–Rouet–Stora–Tyutin (BRST) formalism for the interacting Abelian 1-form gauge theories where there is a coupling between the U(1) Abelian 1-form gauge field and Dirac as well as complex scalar fields. We exploit the (anti-)BRST invariant restrictions on the (anti-)chiral superfields to derive the fermionic symmetries of our present D-dimensional Abelian 1-form gauge theories. The novel observation of our present investigation is the derivation of the absolute anticommutativity of the nilpotent (anti-)BRST charges despite the fact that our ordinary D-dimensional theories are generalized onto the (D,[Formula: see text]1)-dimensional (anti-) chiral super-submanifolds (of the general (D,[Formula: see text]2)-dimensional supermanifold) where only the (anti-)chiral super expansions of the (anti-)chiral superfields have been taken into account. We also discuss the nilpotency of the (anti-)BRST charges and (anti-)BRST invariance of the Lagrangian densities of our present theories within the framework of ACSA to BRST formalism.


2012 ◽  
Vol 27 (22) ◽  
pp. 1250123 ◽  
Author(s):  
R. P. MALIK

We perform the Becchi–Rouet–Stora–Tyutin (BRST) analysis of the Freedman–Townsend (FT) model of topologically massive non-Abelian theory by exploiting its (1-form) Yang–Mills (YM) gauge transformations to show the existence of some novel features that are totally different from the results obtained in such a kind of consideration carried out for the dynamical non-Abelian 2-form theory. We tap here the potential and power of the augmented version of Bonora–Tonin's superfield approach to BRST formalism to derive the full set of off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations where, in addition to the horizontality condition (HC), we are theoretically compelled to exploit the appropriate gauge-invariant restrictions (GIRs) on the (super)fields for the derivation of the appropriate symmetry transformations for all the relevant fields. We compare our key results with that of the other such attempt for the discussion of the present model within the framework of BRST formalism.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


2010 ◽  
Vol 25 (28) ◽  
pp. 2457-2467
Author(s):  
SAURABH GUPTA ◽  
R. P. MALIK

We show that the previously known off-shell nilpotent [Formula: see text] and absolutely anticommuting (sb sab + sab sb = 0) Becchi–Rouet–Stora–Tyutin (BRST) transformations (sb) and anti-BRST transformations (sab) are the symmetry transformations of the appropriate Lagrangian densities of a four (3+1)-dimensional (4D) free Abelian 2-form gauge theory which do not explicitly incorporate a very specific constrained field condition through a Lagrange multiplier 4D vector field. The above condition, which is the analogue of the Curci–Ferrari restriction of the non-Abelian 1-form gauge theory, emerges from the Euler–Lagrange equations of motion of our present theory and ensures the absolute anticommutativity of the transformations s(a)b. Thus, the coupled Lagrangian densities, proposed in our present investigation, are aesthetically more appealing and more economical.


2014 ◽  
Vol 29 (31) ◽  
pp. 1450183 ◽  
Author(s):  
A. Shukla ◽  
S. Krishna ◽  
R. P. Malik

We derive the off-shell nilpotent and absolutely anticommuting Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations, corresponding to the (1-form) Yang–Mills (YM) and (2-form) tensorial gauge symmetries of the four (3+1)-dimensional (4D) Freedman–Townsend (FT) model, by exploiting the augmented version of Bonora–Tonin's (BT) superfield approach to BRST formalism where the 4D flat Minkowskian theory is generalized onto the (4, 2)-dimensional supermanifold. One of the novel observations is the fact that we are theoretically compelled to go beyond the horizontality condition (HC) to invoke an additional set of gauge-invariant restrictions (GIRs) for the derivation of the full set of proper (anti-)BRST symmetries. To obtain the (anti-)BRST symmetry transformations, corresponding to the tensorial (2-form) gauge symmetries within the framework of augmented version of BT-superfield approach, we are logically forced to modify the FT-model to incorporate an auxiliary 1-form field and the kinetic term for the antisymmetric (2-form) gauge field. This is also a new observation in our present investigation. We point out some of the key differences between the modified FT-model and Lahiri-model (LM) of the dynamical non-Abelian 2-form gauge theories. We also briefly mention a few similarities.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
S. Kumar ◽  
B. Chauhan ◽  
R. P. Malik

We exploit the theoretical strength of augmented version of superfield approach (AVSA) to Becchi-Rouet-Stora-Tyutin (BRST) formalism to express the nilpotency and absolute anticommutativity properties of the (anti-)BRST and (anti-)co-BRST conserved charges for the two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields) in the language of superspace variables, their derivatives, and suitable superfields. In the proof of absolute anticommutativity property, we invoke the strength of Curci-Ferrari (CF) condition for the (anti-)BRST charges. No such outside condition/restriction is required in the proof of absolute anticommutativity of the (anti-)co-BRST conserved charges. The latter observation (as well as other observations) connected with (anti-)co-BRST symmetries and corresponding conserved charges are novel results of our present investigation. We also discuss the (anti-)BRST and (anti-)co-BRST symmetry invariance of the appropriate Lagrangian densities within the framework of AVSA. In addition, we dwell a bit on the derivation of the above fermionic (nilpotent) symmetries by applying the AVSA to BRST formalism, where only the (anti)chiral superfields are used.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
A. Shukla ◽  
S. Krishna ◽  
R. P. Malik

We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, and (anti-)co-BRST symmetry transformations forallthe fields of the modified version of two(1+1)-dimensional (2D) Proca theory by exploiting the “augmented” superfield formalism where the (dual-)horizontality conditions and (dual-)gauge invariant restrictions are exploitedtogether. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian density in the language of superfield approach. We also express the nilpotency and absolute anticommutativity of the (anti-)BRST and (anti-)co-BRST charges within the framework of augmented superfield formalism. This exercise leads to somenovelobservations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry, and discrete symmetries of the theory and show that the algebra of conserved charges provides a physical realization of the Hodge algebra (satisfied by the de Rham cohomological operators of differential geometry).


Sign in / Sign up

Export Citation Format

Share Document